
Modeling Large Scale Circuits Using
Massively Parallel Discrete-Event Simulation

Elsa Gonsiorowski
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street, Troy, NY
gonsie@rpi.edu

Christopher Carothers
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street, Troy, NY
chrisc@cs.rpi.edu

Carl Tropper
School of Computer Science

McGill University
Montreal, Canada

carl@cs.mcgill.ca

Abstract—
As computing systems grow to exascale levels of performance,

the smallest elements of a single processor can greatly affect the
entire computer system (e.g. its power consumption). As future
generations of processors are developed, simulation at the gate
level is necessary to ensure that the necessary target performance
benchmarks are met prior to fabrication. The most common
simulation tools available today utilize either a single node or
small clusters and as such create a bottleneck in the development
process. This paper focuses on the massively parallel simulation
of logic gate circuit models using supercomputer systems. The
focus of this performance study leverages the OpenSPARC T2
processor design using Rensselaer’s Optimistic Simulation System
(ROSS). We conduct simulations of the crossbar component on
both a 24-core SMP machine and an IBM Blue Gene/L. Using a
single SMP core as the baseline, our performance experiments on
1024 cores of the Blue Gene/L demonstrate more than 131-times
faster execution. Our results capitalize on the balanced compute
and network power of the Blue Gene/L system.

I. INTRODUCTION

As supercomputer systems approach exascale, the core
count will exceed 1024 and number of transistors used in
these designs will number in the 10’s of billions. However,
at the same time there is an increased need to understand
the performance dynamics of these systems at the lowest
levels in order to provide highly accurate performance and
power utilization measures. For example, if an 25 MWatt
supercomputer’s power estimation is off by 5% that equates to
1.25 MWatts or $1.25 million per year of operation. Because
of the size and operating costs of these systems, accurate
estimates are needed.

Digital logic simulation is a well known tool which can
be used to address this problem. However, to date, gate-level
simulations has been too computationally intensive to be an
effective solution. As a first step, this paper focuses on the
parallel simulation of the OpenSPARC T2 crossbar (CCX)
component making use of current supercomputer systems.
Using ROSS, we are able to investigate both conservative
[1] and optimistic [2] simulation. We include both strong
scaling and weak scaling experiments, along with attempts
to increase the efficiency of optimistic simulation. For the
weak scaling experiments, a single crossbar is replicated many
times and nominally connected across a few data lines. These
experiments are conducted on two machines:

• A 24-core symmetric multiprocessing machine with 2.667
GHz cores (baseline).

• An IBM Blue Gene/L with 700 MHz cores interconnected
with fast communication networks [3].

We demonstrate the efficacy of using massively parallel
systems to improve the performance from almost 900,000
events per second on a single SMP machine core to over
116,000,000 state-transition events per second on 1024 Blue
Gene/L cores. This represents an improvement in performance
of nearly 131 times. Additionally, we find that because of
the low variance in timestamp increments within the gate
model, conservative synchronization outperforms optimistic
processing with reverse computation.

II. RELATED WORK

Much work has been done in digital logic simulation,
employing many different simulation techniques. Hardware
based simulation [4] can be efficient, but is not as flexible
as software based implementations. Additionally, computing
power is ever increasing and the best software simulators will
be able to take advantage of future progress.

With the rise of GPU programming, [5] and [6] have
investigated possible simulation speedups in this area. While
their results have been significant, GPUs lack the memory
capacity for extremely large circuit models.

The most comparable digital logic simulations research has
been preformed by Tropper et al [7]–[10] with the latest
results in [11]. Both [7] and [8] focus on Clustered Time
Warp simulations. The optimistic XTW simulator [10] was
an outgrowth of this work. In this paper we utilize the Verilog
parser [9] built in conjunction with XTW. The continuation of
this work focuses on speedup gains obtained through dynamic
load balancing [11]–[13].

III. THE ROSS FRAMEWORK

ROSS is a framework designed for parallel discrete-event
simulation and is built upon Jefferson’s Time Warp [14]. Each
discrete object in the simulation is known as a Logical Process
(LP). LPs communicate with each other through messages
(also known as events). In this specific simulation, the LPs
model gate objects. The messages sent between the LPs
represent electrical signals between gates.



Unlike many other simulation systems, ROSS has no form
of state-saving. While event reconstruction has been used
with circuit simulation before [15], reverse computation [16]
is most effective for this model due to small message size.
To revert the state of a gate, a reverse computation is used.
Through reverse messages, the gate object must be able to
undo any state changes which happened during forward event
processing. Thus, for each forward event course of action, a
corresponding reverse computation must be implemented.

The underpinnings of ROSS [16]–[19] are written in ASNI
C and designed for efficiency. This includes the reversible
random number generator library based upon a Combined
linear Congruential Generator. All memory is handled within
ROSS itself, and is centered around managing the event
objects. The overarching event list (for each processor) is a
priority queue, implemented as either a Calendar Queue [20]
or a Splay-Tree [21]. This research utilizes only the Splay-Tree
implementation.

OpenSPARC T2 source
Verilog RTL gtech.lib

ccx.vsyn

Verilog Netlist

ccx.bench

(basic boolean gates, one gate per line)

ccx-np.vbench

(formatted for round robin block reading)

ROSS gates models

Synopsys Design Compiler

Lex and Yacc Parser

Python Preprocessor

Fig. 1. Process for transforming RTL code to machine readable gate
descriptions.

IV. THE DATA

The OpenSPARC T2 processor design is an excellent ex-
ample of open-source hardware [22]. It is a 64-bit, eight-
core, microprocessor description in VHDL and Verilog. Using
the Synopsys Design Compiler and scripts provided by the
OpenSPARC code base, we were able to generate gate level
descriptions for discrete sections of the processor. In this paper
we focus solely on the CPU-cache crossbar, the processor
component which links the eight processing units. This module
contains over 200,000 gates.

The gate description is transformed and processed in many
ways before it can be efficiently used in a simulation model.
This process is described in Figure 1.

A. Source

The OpenSPARC T2 design is provided in Verilog Register
Transfer Language (RTL). This flexible description is fairly
high level, especially from a hardware perspective. It encodes
modules at an abstract, logical level. (Data Format 1).

Data Format 1 Verilog RTL

module ccx (scan_in, scan_out, ...);
wire [1:0] scan_in_buf;
input [1:0] scan_in;
...
clkgen_ccx_cmp clk_ccx (...);
endmodule

B. Gate Level

Using the Synopsys Design Complier, the RTL source can
be synthesized into a gate level description. At this level
several high level modules can be synthesized into one flat
netlist. This file format is still completely valid Verilog code.
The module is defined with connection arguments and the
netlist of its gates. For this research, we used the generic
technology library (GTECH) [23]. (Data Format 2).

Data Format 2 Verilog Netlist

module ccx (scan_in, scan_out, ...);
input [1:0] scan_in;
...
GTECH_NOT U61 (.A(n1319), .Z(n94428));
GETCH_BUF U78 (.A(scan_out[1]), .Z(ccx_out[15]));
endmodule

C. Basic Boolean Gates

The GTECH standard cell library is provided by Synopsys.
This gate library contains over 100 specialized gates, many
of which operate at a higher level than the traditional boolean
logic level. To facilitate development, each GTECH module is
further broken down into its basic gates. Of these basic gates,
there are only 8 logical types: repeater (DFF), NOT, AND,
NAND, OR, NOR, XOR, and XNOR. These gates are flexible
and allow for a maximum of four inputs. Three additional
types are available: input, output, and clock, and are kept as
distinct types.

The transformation is accomplished by a Verilog parser
provided by Li et al [8]. This parser utilizes Lex and Yacc
[24].

The resulting file format has one gate description per
line. Input and output gates specify the purpose of a named
connection. Each gate object is written as an assignment. The



named output wire is the result of a gate function which takes
named input wire arguments. At this level most of the original
wire names are maintained, however, intermediate wires have
been inserted by the parser. (Data Format 3).

Data Format 3 Basic Gates

INPUT(scan_in[0])
INPUT(scan_in[1])
OUPUT(scan_out[0])
OUTPUT(scan_oun[1])
...
n1319 = NOT(n94428)
ccx_rstg_out[15] = DFF(scan_out[1])

D. Machine Format

The final conversion step is simple processing to allow for
efficient machine reading. At this point, almost all of the
details of each gate are captured in a single line. However,
gate names are still expressed as strings and must be converted
to global identification numbers. For maximum compactness,
line numbers correspond to the global id and the implicit order
must be understood by the ROSS model.

The meaning of each number on a line in Data Format 4 is
as follows:

• 0th number: Line number implies global ID
• 1st number: Output count
• 2nd number: Gate type
• 3rd − 6th number: Global IDs of any input connections

Data Format 4 Machine Gates

0 2
0 3 3
2 5 46762
1 7 126287 126288 126289 126290
1 6 126192 126274
12 4 29309

E. Mapping and Parallel I/O

When formatting data files for reading in parallel, one must
ensure that individual blocks can be read efficiently by any
single processor. Block reading means that each line must
contain the same number of bytes, allowing for block size
calculation at runtime. Thus, each line is filled with whitespace
characters to ensure a consistent line length.

The final step for the data file is to ensure that the order
matches the LP mapping at runtime. Due to the fact that the
original crossbar component (in Verilog RTL form) had a high
level module ordering, the final machine data file may have
some overarching, implicit ordering. For small simulations on
many processors (as in the strong scaling experiments) we
attempt to balance the load across all processors which contain
a part of a distinct crossbar. To create this balance, the gate

objects are distributed, round robin style, among processors.
Again, block reading by an individual processors means that
the lines of the data file must also be rearranged in a round
robin fashion.

Depending on the simulation, several processors may need
to read a single data file. This easily accomplished, in parallel,
through MPI (Message Passing Interface) [25]. Within the
MPI File open function, one can specify both the file mode
and processor group. The MPI constants MPI MODE RDONLY
and MPI COMM SELF indicate read-only mode on a single pro-
cessor. This means, even when many processors are accessing
the same file, each processor is given its own file handler. The
final step of file reading involves the MPI File read at
function, with one function call for each line/gate to read. By
using parallel reads, this method is both fast and efficient [26].

V. THE MODEL

A. Gate Objects and Messages

The gate level simulation is executed at the Logical Process
(LP) level. Each LP models a single gate, sending messages
to other gates (LPs). While some data is stored in the ROSS
LP object (such as the global identification number of the
LP), most information is stored in a state object. This struct
defines each gate’s type, its input and output connections, as
well as the statistics for the individual gate. At a global level,
gate functions are defined and are indexed by each unique
gate type. These functions transform the input and output
connection arrays and can be easily redefined for a different
EDA gate library.

Within the ROSS framework the state object is transformed
based upon received messages. Due to the use of reverse
computation, there is only a current copy of each LP’s state.
The small messages represent (in this model) the electronic
high/low or 1/0 signals between gates. Within ROSS, a mes-
sage is processed by the forward event handler; if a rollback
occurs, the same message is un-processed with the reverse
event handler. This allows, by updating the message itself,
for single values to be saved between forward and reverse
computations.

The lifetime of a gate object within the ROSS framework
is as follows:

1) Global Virtual Time < 0: Initialization via file input.
2) GVT = 0..10: Setup messages to link gates across the

network.
3) GVT = 10..end: Simulation message processing with

possibilities of rollbacks.
4) GVT > end: Wrap up and final statistic reporting.

B. Simulation Time

In the gate simulation, one unit of global simulation time
represents one clock cycle. A basic assumption in this model
is that each gate has a delay of one clock cycle. Within the
clock cycle a single LP follows the basic timeline in Figure 2.
All messages sent from one gate object to another are sent at
time x.5. These messages have a staggered arrival time, and
arrive within a 0.2 clock cycle window. The first message to



CCXCCX

Generated input Unused output Output passed to input

CCX CCX

CCX CCX CCX CCX

CCX CCX CCX CCX

CCX CCX CCX CCX

Fig. 3. A 4x4 synthetic circuit. Crossbar instances within the same row are
connected along certain data lines. Most input signals are randomly generated
for each crossbar instance. This sample circuit contains almost 3.4 million
gates.

arrive at a gate object triggers a self-update event, scheduled
at the next half clock cycle. This self-scheduled event triggers
the next round of inter-gate messages.

The lookahead value is the minimum value timestamp that
an LP can use to schedule a future event. Within this model a
lookahead value of 0.4 is used. Overall, the average timestamp
increment is 0.5 clock cycles.

C. Large Circuits

The future of computing would appear to lie in parallel
systems; however, parallelization is happening at the chip
level. Single chips contain many computing cores. As the
size and complexity of these chips grow, the size of the
simulation models grow accordingly. Large scale simulations,
on the order of one billion gates will be necessary to execute.
The designs for these future technologies are not available to
the community. Hence the only option for demonstrating our
simulation on such a large scale circuit is to devise our own
model for experimentation.

While advanced approaches to synthesis exist [27], the
most basic and obvious method is duplication of an existing
circuit. In order to efficiently create a large scale circuit for
simulation, we duplicated the crossbar. In addition, some data
lines (such as the CPU repeaters) are connected across crossbar
instances. The overall duplication is grid based, with data
line connections occurring along horizontal rows of crossbar
instances, see Figure 3.

VI. RESULTS

The circuit simulations were performed on two machines.
The first is a 24-core symmetric multiprocessing (SMP) ma-
chine, operating at 2.667 GHz. The second is an IBM Blue

0

1

2

2

3

4

1 2 4 8 16

Low Volume, SMP Machine

Ev
en

t R
at

e 
(m

illi
on

s/
se

co
nd

)

Number of Processors

Conservative
Optimistic

Fig. 4. Single crossbar experiments 2.667 GHz SMP cores. Inputs are
generated randomly every 30 simulation clock cycles.

0

3

6

9

12

15

64 128 256 512 1024

Low Volume, IBM Blue Gene/L

Ev
en

t R
at

e 
(m

illi
on

s/
se

co
nd

)

Number of Processors

Conservative
Optimistic

Fig. 5. Single crossbar experiments 700 MHz Blue Gene/L cores. Inputs are
generated randomly every 30 simulation clock cycles.

Gene/L, with up to 1024 cores, each operating at 700 MHz.
With the Blue Gene, ROSS is able to take advantage of the
communication networks [18], [19]. In terms of computing
power, 16 SMP cores is equivalent to 64 Blue Gene/L cores.
This is due to the faster clock rates, a deep pipeline, and
more functional units in the SMP’s Intel X5650 processors.
Throughout our testing, we focus on the event rate statistic
of the simulation. This is principally due to the fact that the
simulation is deterministic, resulting in consistent event counts
for any sized simulation, irrespective of how many processors
are used to execute it. Since each event represents a gate
transition, the event rate metric reflects the speed of the overall
simulation as well as the (high) volume of events we are able
to compute.

For all experiments, the base crossbar component consists



.5 .6 .7 .8 .9 .1 .2 .3 .4 .5 .6 .7 .8 .9 .1

1

Message from LP 1

Message from LP 2

Message to LP 3
from itself

Signal messages
to LP 3 outputs

Clock Edge

2 3Lookahead Lookahead

Fig. 2. Simulation clock cycle time slice. All messages are scheduled for at least 0.4 “seconds” in the future, allowing us to use this as the lookahead. ¬
Messages across LPs are sent at time = x.5.  Messages randomly arrive within a window around the clock edge, time = x.0. The first message to arrive
at an LP triggers a “calculate” message sent to itself. ® Each updated LP receives a “calculate” message at time = x.5. Here the LP internally calculates its
new output values. This values sent to its outputs (step ¬).

0

1

2

2

3

4

1 2 4 8 16

High Volume, SMP Machine

Ev
en

t R
at

e 
(m

illi
on

s/
se

co
nd

)

Number of Processors

Conservative
Optimistic

Fig. 6. Single crossbar experiments 2.667 GHz SMP cores. Inputs are
generated randomly every 2 simulation clock cycles.

of 211,001 individual gates.

A. Single Crossbar

The initial phase of testing consisted of a strong-scaling
scenario: a single crossbar. Obviously, scale up occurred as the
number of processors used increased. In Figures 4 and 5 a low
volume of inputs was used, one wave of randomly generated
inputs every 30 “clock cycles”. We also tested a larger overall
workload among all processors. Figures 6 and 7 shows a high
volume of randomly generated input signals, one every two
“clock cycles”. These relatively small scale (211,001 gates)
experiments generate approximately 1.4 billion events over
3000 simulated clock cycles.

In both of these experiments, it is surprising that the
optimistic simulation did not result in better performance then
the conservative simulation [28]. This drop off in performance
on the part of the optimistic simulation is due to the scant
amount of work on each of the 1024 processors. Coupled with
a high percentage of remote events, 62.56% in the high volume

0

3

6

9

12

15

64 128 256 512 1024

High Volume, IBM Blue Gene/L

Ev
en

t R
at

e 
(m

illi
on

s/
se

co
nd

)

Number of Processors

Conservative
Optimistic

Fig. 7. Single crossbar experiments 700 MHz Blue Gene/L cores. Inputs are
generated randomly every 2 simulation clock cycles.

0

1

2

4

5

6

1 2 4 8 16

Weak Scaling, 24-Core SMP Machine

Ev
en

t R
at

e 
(m

illi
on

s/
se

co
nd

)

Number of Processors

Conservative
Optimistic

Fig. 8. Large circuit study, with one crossbar instance per processor.



0

30

60

90

120

150

32 64 128 256 512 1024

Weak Scaling, IBM Blue Gene/L
Ev

en
t R

at
e 

(m
illi

on
s/

se
co

nd
)

Number of Processors

Conservative
Optimistic

Fig. 9. Large circuit study, with one crossbar instance per processor. Each
synthetic circuit was 32 crossbar instances wide.

scenario, we have an overly optimistic execution [2].

B. Large Synthetic Circuit

The next experiment was a weak scaling study, as seen in
Figures 8 and 9. This experiment clearly shows the power
of the conservative simulation. The largest synthetic circuit,
a 32x32 crossbar circuit (a single crossbar on each of the
1024 processors) consists of over 216 million gates. This
conservative simulation contained 1.5 trillion events with an
event rate of 116 million events per second. Gate-level models
at this scale have, to the best of our knowledge, never been
done before.

The result is an improvement in execution of at least 131-
times. It should be noted that this is only a ”conservative”
estimate based upon the weak scaling experiments. Even if
such a large simulation could be executed on a single core,
we would expect to see super linear speedup when compared
with a parallel system simulation because of cache memory
effects.

C. Optimistic Tuning

In an effort fine-tune the simulation to improve the opti-
mistic performance, we focused on reducing the forced GVT
count. A forced GVT is usually an attempt by ROSS to
reclaim some memory. Optimistic simulations usually take up
more memory than their conservative counterparts due to the
need to keep messages in case of rollbacks (and thus reverse
computation). The following experiments were conducted on
the 24-core SMP machine, using a 4x4 synthetic circuit on 16
cores (Figure 3).

The first experiment explores the effect of the size of the
memory allocation (in terms of number of allocated events per
processor), see Table I.

As is clear from this table, more allocated memory re-
duces the forced GVT count. However, memory is not a

Memory Allocated
(Millions of Events) Forced GVTs

0.6 1004
0.8 478
1.0 827
1.2 415

TABLE I
MEMORY ALLOCATION EFFECTS ON FORCED GVT COUNT. EXPERIMENTS

WERE RUN WITH CONSTANT PARAMETERS BATCH = 8 AND
GVT-INTERVAL = 2048.

“free” resource, especially within supercomputing systems.
Other variables must also be adjusted to achieve optimistic
performance.

Within ROSS, the batch and GVT-interval parameters de-
termine how many events are processed between successive
global GVT computations. Batch specifies how many local
events are processed before checking for network events. The
GVT-interval defines how many event processing loops occur
between GVT computations. The effect of these experiments
on number of forced GVTs can be seen in Table II. The
high batch and GVT-interval product can be tolerated in this
simulation due to the very small (less than 1% remote event
count).

Batch ×
GVT-Interval Forced GVTs

2 × 1024 1312
4 × 1024 750
8 × 1024 577
16 × 1024 415
32 × 1024 393
32 × 2048 236
32 × 4096 195

TABLE II
EFFECT OF BATCH AND GVT-INTERVAL PARAMETERS ON FORCED GVT

COUNT. EXPERIMENTS WERE RUN WITH A CONSTANT MEMORY
ALLOCATION OF 0.8 MILLION EVENTS.

We see here that forced GVTs are persistent and difficult to
get rid of. Further attempts to improve optimistic performance
will be part of our future research.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have shown that gate-level simulation
is possible for large circuits. A modestly sized (1024 node)
supercomputer was used to demonstrate a 131-times perfor-
mance increase when compared to a single core sequential
simulation. In our most successful simulation, we were able
to achieve 116 million gate-transaction events per second for
a circuit of 216 million gates. We shall continue our research
to improve our simulation speeds and to model more realistic
circuits.

The lookahead of 0.4 time units (in relation to the timestamp
increment of 0.5 time units) is in the medium to large
range, based on the performance study by Carothers and



Perumalla [28]. From this study, we note that conservative
synchronization outperforms optimistic synchronization for
medium and large lookahead up to 8K cores. We observe the
same phenomena here. Should the lookahead become smaller
due to changes in the model or core count increase, we expect
optimistic performance to improve and potentially overtake
conservative performance. Future experimentation is required
to confirm this hypothesis. A potential caveat for optimistic
performance are high fan-out gate transitions that result in the
scheduling of large volumes of events into the future. This
places considerable pressure on memory and results in time
consuming “forced” GVT computations. More experimenta-
tion is needed to determine the performance impact of these
high fan-out event computations.

Future research should also examine the impact of circuit
properties, such an high fanout, on the efficiency of conserva-
tive and optimistic simulations.

REFERENCES

[1] Y.-B. Lin and P. A. Fishwick, “Asynchronous parallel discrete event
simulation,” IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBER-
NETICS, vol. 26, 1996.

[2] R. Fujimoto, Parallel and distributed simulation systems, ser. Wiley
series on parallel and distributed computing. Wiley, 2000. [Online].
Available: http://books.google.com/books?id=b dQAAAAMAAJ

[3] N. Adiga et al., “An overview of the bluegene/l supercomputer,” in
Supercomputing, ACM/IEEE 2002 Conference, nov. 2002, p. 60.

[4] M. Riepe, J. Silva, K. Sakallah, and R. Brown, “Ravel-xl: a hardware
accelerator for assigned-delay compiled-code logic gate simulation,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 4, no. 1, pp. 113 –129, march 1996.

[5] D. Chatterjee, A. DeOrio, and V. Bertacco, “Gcs: High-performance
gate-level simulation with gpgpus,” in Design, Automation Test in
Europe Conference Exhibition, 2009. DATE ’09., april 2009, pp. 1332
–1337.

[6] V. Bertacco and D. Chatterjee, “High performance gate-level simulation
with gp-gpu computing,” in VLSI Design, Automation and Test (VLSI-
DAT), 2011 International Symposium on, april 2011, pp. 1 –3.

[7] H. Avril and C. Tropper, “Clustered time warp and logic simulation,”
in Parallel and Distributed Simulation, 1995. (PADS’95), Proceedings.,
Ninth Workshop on (Cat. No.95TB8096), Jun. 1995, pp. 112–119.

[8] L. Li, H. Huang, and C. Tropper, “DVS: an object-oriented framework
for distributed Verilog simulation,” in Parallel and Distributed Simula-
tion, 2004. PADS 2004. 18th Workshop on, Jun. 2003, pp. 173–180.

[9] S. Meraji, W. Zhang, and C. Tropper, “On the Scalability of Parallel Ver-
ilog Simulation,” in Parallel Processing, 2009. ICPP ’09. International
Conference on, Sep. 2009, pp. 365–370.

[10] Q. Xu and C. Tropper, “XTW, a parallel and distributed logic simu-
lator,” in Parallel and Distributed Simulation, 2004. PADS 2004. 18th
Workshop on, Jun. 2005, pp. 181–188.

[11] S. Meraji and C. Tropper, “Optimization Techniques for Parallel Digital
Logic Simulation,” Parallel and Distributed Systems, IEEE Transactions
on, vol. PP, no. 99, p. 1, 2012.

[12] H. Avril and C. Tropper, “The Dynamic Load Balancing of Clustered
Time Warp for Logic Simulation,” in Parallel and Distributed Simula-
tion, 1996. Pads 96. Proceedings. Tenth Workshop on, 1996, pp. 20–27.

[13] S. Meraji, W. Zhang, and C. Tropper, “A multi-state q-learning approach
for the dynamic load balancing of time warp,” in Principles of Advanced
and Distributed Simulation (PADS), 2010 IEEE Workshop on, may 2010,
pp. 1 –8.

[14] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming
Languages and Systems, vol. 7, no. 3, pp. 404–425, 1985.

[15] L. Li and C. Tropper, “Event reconstruction in time warp,” in Parallel
and Distributed Simulation, 2004. PADS 2004. 18th Workshop on, May
2004, pp. 37–44.

[16] C. Carothers, K. Perumalla, and R. Fujimoto, “Efficient optimistic par-
allel simulations using reverse computation,” in Parallel and Distributed
Simulation, 1999. Proceedings. Thirteenth Workshop on, 1999, pp. 126–
135.

[17] C. Carothers, D. Bauer, and S. Pearce, “ROSS: a high-performance,
low memory, modular time warp system,” in Parallel and Distributed
Simulation, 2000. PADS 2000. Proceedings. Fourteenth Workshop on,
2000, pp. 53–60.

[18] D. Bauer, C. Carothers, and A. Holder, “Scalable Time Warp on
Blue Gene Supercomputers,” in Principles of Advanced and Distributed
Simulation, 2009. PADS ’09. ACM/IEEE/SCS 23rd Workshop on, Jun.
2009, pp. 35–44.

[19] A. O. Holder and C. D. Carothers, “Analysis of Time Warp on a 32,768
Processor IBM Blue Gene/L Supercomputer,” Proceedings of the 2008
European Modeling and Simulation Symposium, pp. 284–292, 2008.

[20] R. Brown, “Calendar queues: a fast 0(1) priority queue implementation
for the simulation event set problem,” Communications of the ACM,
vol. 31, no. 10, pp. 1220–1227, 1988.

[21] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,”
Journal of the ACM, vol. 32, no. 3, pp. 652–686, 1985.

[22] I. Parulkar, A. Wood, S. Microsystems, and S. Mitra, “OpenSPARC :
An Open Platform for Hardware Reliability Experimentation,” Fourth
Workshop on Silicon Errors in LogicSystem Effects SELSE, 2008.

[23] S. Palnitkar, Verilog Hdl: A Guide to Digital Design
and Synthesis. SunSoft Press, 2003. [Online]. Available:
http://books.google.com/books?id=fCSIpgsqkhkC

[24] J. Levine, T. Mason, and D. Brown, Lex & Yacc, ser. A Nutshell
Handbook. O’Reilly & Associates, 1992. [Online]. Available:
http://books.google.com/books?id=YrzpxNYegEkC

[25] (2009, January) Mpi, message passing interface. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi/

[26] J. Fu et al., “Scalable parallel i/o alternatives for massively parallel par-
titioned solver systems,” in Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,
april 2010, pp. 1 –8.

[27] M. D. Hutton, J. S. Rose, and D. G. Corneil, “Automatic generation
of synthetic sequential benchmark circuits,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 21, no. 8,
pp. 928–940, Aug. 2002.

[28] C. Carothers and K. Perumalla, “On deciding between conservative and
optimistic approaches on massively parallel platforms,” in Simulation
Conference (WSC), Proceedings of the 2010 Winter, Dec. 2010, pp.
678–687.

ACKNOWLEDGEMENT

This material is based on research sponsored by Air Force
Research Laboratory under agreement number FA8750-11-2-
0065. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory or the U.S.
Government.


