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ABSTRACT
Gate-level circuit simulation is an important step in the design and
validation of complex circuits. This step of the process relies on ex-
isting libraries for gate specifications. We start with a generic gate
model for Rensselaer’s Optimistic Simulation System (ROSS), a
parallel discrete-event simulation framework. This generic model
encompasses all functionality needed by optimistic simulation us-
ing reverse computation. We then describe a parser system which
uses a standardized gate library to create a specific model for sim-
ulation. The generated model is comprised of several functions
including those needed for an accurate model of timing behavior.

To quantify the improvements that an automatically generated
model can have over a hand written model we compare two gate
library models: an automatically generated LSI-10K library model
and a previously investigated, handwritten, simplified GTECH li-
brary model [19]. We conclude that the automatically generated
model is a more accurate model of actual hardware. The generated
model also represents the timing behavior with an approximately
50 times higher degree of fidelity. In comparison to previous re-
sults, we find that the automatically generated model is able to
achieve better optimistic simulation performance when measured
against conservative simulation. We identify peak optimistic per-
formance when using 128 MPI-Ranks on eight nodes of an IBM
Blue Gene/Q machine.
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D.1.2 [Programming Techniques]: Automatic Programming; D.1.3
[Programming Techniques]: Concurrent Programming—Parallel
Programming
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1. INTRODUCTION
In the world of simulation, model creation can be a complex act

of creativity and ingenuity. Model developers must create a de-
tailed representation of a complex real-world system. In addition,
this representation must be built within a specific simulation frame-
work. When working with a discrete-event simulation tool, devel-
opers must account for model memory and understand the details
of how a model’s state may change over time. By creating a generic
model for a common simulation use case, we increase model flexi-
bility to allow for any set of specific details. A user can then make
use of an existing parser to transform a domain-specific description
into code used by the generic model.
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Figure 1: Levels of abstraction within the circuit design pro-
cess. Automatic tools perform synthesis on a given design to
generate the design at the next (lower) level. This design is then
validated through one or more tests.

The process for designing large integrated circuits (such as pro-
cessors) involves simulation at many levels of abstraction (see Fig-
ure 1). Gate-level simulation usually begins with circuit designs at
the Register-Transfer Level (RTL), written in the Verilog Hardware
Description Language [23, 24]. To synthesize the RTL description,
one must select a gate library. This library contains descriptions of
the logic gates available. While this can be as simple as the set of
and, or, and not boolean logic gates, more extensive gate libraries



are often used. Commercial gate libraries will describe the electri-
cal properties of a gate, such as its power draw and resistance.

At the logic gate level of circuit abstraction there are many func-
tional validation tests that are performed. Here, simulation is a
common tool. Simulation is used to test expected output signals
(given a known set of input signals). Simulation can also be used
as a virtual oscilloscope to verify electrical signals at various places
within the circuit.

Integrated circuits have become so complex that sequential sim-
ulation tools are no longer adequate. Many commercial gate-level
simulation tools have limited parallel capability, thus limiting sim-
ulation to sub-components of the larger circuit. Large circuits have
a wealth of inherent parallelism that can be fully exploited with
parallel discrete-event simulation.

This paper describes a generic model for logic-level (gate-level)
circuit simulation. This generic model provides the core capabil-
ity upon which any particular logic gate library can be modeled
and simulated. Here we demonstrate that by using a generic model
with automatically generated library details the overall simulation
is more accurate and has better performance for optimistic simu-
lation, when compared to conservative simulation. To our knowl-
edge, our contributions include the first ever results of gate-level
circuit simulation on a modern supercomputing platform, namely
the IBM Blue Gene/Q.

We begin with a review of simulation and gate-level circuit mod-
eling, including essential terminology, in Section 2. Next, details of
the generic model are described in Section 3. We then describe the
process of parsing an existing gate description written to domain-
specific Liberty language in Section 4. In Section 5, we illustrate
improved accuracy and performance by comparing a handwritten
model with the generic model with automatically generated gate
library details. Section 6 presents related research in the area of au-
tomatic model generation and highlights the importance of logic-
level simulation. Finally, we present a summary of the value and
importance of tools for automatic model generation in Section 7.

2. BACKGROUND
Computer simulations model real world behavior in order to un-

derstand a complex system over time. Within discrete-event simu-
lations the state of the modeled system can only be modified through
a sequence of time-stamped events [39]. Thus these simulations are
from constructed of two entities:

• Events
Each event occurs at a particular instance in time and con-
tains a specific piece of information. An event will directly
affect only one logical process, but a series of events can be
said to be causally linked.

• Logical Processes or LPs
These entities encapsulate the particular state of a portion of
the modeled system. LPs are directly affected by events, and
can cause change to other parts of the system by “sending”
or “scheduling” events in the future.

When a simulation engine exists within a parallel or distributed
environment it falls in the research area of Parallel Discrete-Event
Simulation (PDES). The primary challenge that a legitimate PDES
engine must address is that of unique event serializability [17].
That is, the ordering of events within a simulation must be de-
terministic across any underlying configuration of execution hard-
ware (whether executed in a single processor environment or on
any number of parallel processor configurations). There are two
approaches used by parallel simulation engines to achieve the strict

and reproducible order of events: conservative and optimistic syn-
chronization [17].

2.1 Conservative Synchronization
Conservative synchronization within a parallel simulation engine

ensures that there is both local and global in-order execution of
events. That is, through a conservative synchronization algorithm,
no LP is allowed to process an event unless it can be proven that
all earlier events which affect the given LP have already been pro-
cessed.

The YAWNS algorithm is most common conservative synchro-
nization algorithm used in modern simulation engines [35,36]. This
conservative algorithm uses global synchronization coupled with a
local processing window (called the global lookahead window).
The global lookahead is used to determine the minimum allowable
timestamp increment for events. That is, upon processing an event
at time t, the given LP can only schedule events at a time greater
than t+ global lookahead.

The relationship between lookahead window size and the aver-
age length of event delay within in a system greatly impacts the
speedup that can be achieved by a conservative simulation [11]. If
the lookahead window is relatively small in comparison the aver-
age event delay, there will negative impact on conservative perfor-
mance. This is due to the fact that global synchronization must
happen more frequently as the simulation progresses. If all event
delays are of a uniform size, then the lookahead window can be
quite large and conservative simulation can perform increasingly
well.

2.2 Optimistic Synchronization
Within optimistically synchronized parallel simulations there are

no guarantees of global in-order execution of events. This means
that an LP may process a sequence of events out of serial order.
The most prevalent algorithm in this area is Time Warp [26]. This
method keeps track of inter-event causality. As such, when an out-
of-order event is detected, the system is able to recover [31].

System recovery occurs at an LP level. One method of LP recov-
ery is called reverse computation [12]. This method uses a function
to “un-process” a given event. This allows LPs to rollback or re-
verse the effects of a series of events and begin forward event pro-
cessing with a more correct ordering. Usually, the onus of writing
the function for reversing the state of an LP lies on the model de-
veloper.

When an LP detects out-of-order event, the event is said to cause
the LP to rollback. This rollback may require that certain mes-
sages be canceled. This cancellation process is done through anti-
messages. Within Time Warp systems there are two categories of
rollbacks [17]:

• Primary Rollback
A rollback triggered by receiving a late message. For an LP
at time t, a primary rollback occurs when it receives an event
at a time less than t. This may cause some anti-messages to
be sent.

• Secondary Rollback
A rollback triggered by an anti-message corresponding to a
message which has already processed by an LP.

2.3 ROSS
Rensselaer’s Optimistic Simulation System, ROSS, is a promi-

nent PDES engine [7, 10, 12, 21]. This ANSI C engine includes a
reversible random number generator and is designed for fast and



efficient performance. ROSS performs conservative simulation us-
ing the YAWNS protocol and optimistic simulation using the Time
Warp algorithm with reverse computation. Recently, ROSS has
been shown to be remarkable scalable [6].

2.4 Circuit Design Process
Circuit design for modern processors is a complex activity. The

design process involves several levels of abstraction and uses sim-
ulation for verification. When a circuit design is finally realized at
the logic gate level, the size of the problem to be simulated has in-
creased greatly. Traditionally, this digital logic simulation step has
been a bottle neck in the design process [9].

Parallel simulation, particularly PDES, has been found to be quite
appropriate for this problem [5,9]. Implementations of parallel dig-
ital logic simulation exist for many flavors of the viable PDES algo-
rithms, as this was once an engaging area of research [9,34,40,41].
More recently, however, there has been a lack of activity in this
field, with some believing that there is little room for improve-
ment on existing techniques [22]. This limited view uses tradi-
tional metrics which only evaluate the simulation systems them-
selves [5, 13, 16], without perspective on the larger circuit design
process.

The research presented here involves several concepts from elec-
trical engineering, including the following terms:

• Gate
A small component that performs a logic operation on a set of
inputs to produce a set of outputs. A nand gate is an example
of one boolean logic gate. Some gates may be able to store
data and have an internal state (e.g., a latch).

• Pin
A point of contact for an electrical component within a cir-
cuit. Electrical signals are carried in to and out of a logic gate
along its pins. When a gate has an internal state, the data is
said to reside on “internal pins.”

• Netlist
A list of all components (gates) and their connections for a
given circuit. A particular netlist description of a circuit uses
components specified in a provided gate library.

3. GENERIC MODEL
The generic gate model is the foundation for any gate instance

LP. This generic model encompasses all nonspecific gate behavior,
including: state initialization, message passing, event handling, and
reverse event handling. The specific functions of a particular gate
type are abstracted away with function pointers. By implementing
the fundamentals of a gate model in a nonspecific way, any number
of gates types can be modeled. In the subsequent section, we review
the common functionality that the generic gate model provides.

3.1 Gate State
An LP’s state in ROSS must be flexible enough to encapsulate

the state of any logic gate. By condensing the core characteristics of
any logic gate into a defined set, we created a generic gate model.
This is relatively straightforward for logic gates and they can be
defined by the following characteristics:

• Type
This attribute simply identifies which type of gate (from the
provided gate library) this instance represents.

• Input Pins
This vector represents the pins where electrical signals are

received. The number of incoming wires to a single input
pin of a gate is called fanin. Fanin is usually limited as no
more than one wire connects to an input pin.

• Internal Pins
This vector represents the internal state of a logic gates and
is only used by some more complicated gate types, such as
flip-flops and latches.

• Output Pins
This vector represents the outgoing electrical signals a gate
can produce. The number of outgoing wires from any output
pin is called fanout. Fanout is not limited, meaning several
wires can connect from one output pin.

3.2 State Initialization
During LP initialization, a particular circuit model is instanti-

ated. The generic gate model works with a description of a particu-
lar circuit that has been pre-processed for fast parallel instantiation.
Each LP is provided with a predefined-size chunk of string data
which it parses into its gate type and pin connections.

One challenge of LP initialization is unconstrained fanout for a
particular logic gate instance. A classic example of this is a poorly
defined clock tree, where one logic gate defines the clock signal for
an entire circuit. In the OpenSPARC T2 example (in Section 5),
a single gate experiences a fanout of over 5,000 wires. The issue
arises during pre-processing, when a logic gate instance must be
defined in a pre-determined amount of space. This ensures fast
startup, but cannot include all information about a gate instance’s
outgoing connections. Instead, we provide a size for the output
pins vector, and perform a 2-phase initialization. First, each LP
allocates memory based upon the gate instance information read
from the initialization file. Second, each LP sends a message to the
LPs connected on its input pins notifying them of a link.

3.3 Messages
In any discrete-event simulation, the messages represent small

packets of communication between LPs. These messages trigger
any and every change within the system. When using ROSS’s op-
timistic mode with reverse computation, the messages gain addi-
tional importance. The same message processed during forward
event handling is un-processed as an anti-message during reverse
event handling. We take advantage of this fact by using the message
to store pieces of LP state that are destroyed during forward event
handling. These values are easily restored from the anti-message
during rollback.

Messages store the following:

• Sender Information
This includes the sender ID and which pin the value was sent
from.

• Receiver Information
This includes which pin the value is received upon.

• Signal Information
This may be a high or low value (some gate libraries make
use of more than two possible signal values).

Additional space in the message is allocated for latch-style gates
with internal logic pins. These gates store information in internal
state that must be state-saved to the message during forward event
handling.



3.4 Forward Event Handling
Event handling during simulation is relatively straightforward

for any generic logic gate model. Upon receiving an electrical sig-
nal (such as a digital 1 or 0) on an input pin, the gate calculates
signals to send through its output pins. The model LPs then send
messages with a specific delay. For a code snippet, see Figure 2.
It is important to note that any LP state value that is overwritten is
saved to the message before destruction. The message processed
here becomes the anti-message which is processed during an opti-
mistic simulation rollback.

The flexibility to model any given library of gates is done
through type defined function pointers. For each gate type-defined
in the Liberty library, several functions are generated. The most
essential function is the logic function. Each gate type generates
a logic function adhering to the type definition: typedef void
(*logicFunction) (int input[], int internal[], int
output[]). The values of the output pins are then sent through
a message simulating an electrical signal. These messages have a
delay associated with them, depend on whether the incoming input
signal was rising or falling. We use the following delay function
type: typedef float (*delayFunction) (int inputPin, int
outputPin, int risingFlag).

To make these specific functions easily accessible by the generic
model, they are placed in an array. These arrays can be referenced
by the integer defining an LP’s particular gate type.

3.5 Reverse Event Handling
The ability of an LP to rollback, or revert to its state to a previous

point in time, is a key property of any optimistic simulation model.
Being able to achieve this in a programmatic manner is not always
an easy task, particularly if a model has large state or encapsulates
complex logic. This is decidedly not the case when it comes to
simple logic gates. The crucial detail of a logic gate is that the
output signals can be calculated from the given set of input (and
possibly internal) pins. Thus, an event that stores information used
by the forward event handler can easily store the same information
needed to revert the LP state.

The reverse event handler for the generic gate model is surprising
uncomplicated (see Figure 3). The ROSS engine does the hard
work of tracking event causality. An individual LP needs to only
“un-process” an anti-message. For the generic model, that involves
using values stored the anti-message to revert the state. These are
the same values that were saved to the message during the forward
event handling.

For any given gate library, there is no need to undo any logic
which took place within the gate. The output pins will be re-
evaluated during the next forward execution of an event. This el-
ementary aspect of logic gates makes the automatic generation of
any model straightforward.

4. MODEL GENERATION
To model the specific behavior of gates in a specified library, the

library description file must be parsed. The goal for this process
is to transform the domain-specific gate descriptions into an equiv-
alent model for ROSS written in C. Currently, our generic model
(Section 3) uses only the timing and boolean-logic data for each
gate. The simplicity of the generic model makes it easy to extend
to other gate properties, such as power usage.

This parsing is straight forward for any library that adheres to the
domain-specific Liberty format [30]. To parse the grammar defined
by Liberty, we created a Python Lex-Yacc LR-parser [8].

This parsers builds a collection of Gate_Type objects, consist-
ing of pins and “special” internal functions. Each pin is associated

with a direction, and output pins are associated with a boolean ex-
pression representing a logic function. Once this object hierarchy
is created from the input Liberty file, each Gate_Type preforms a
local analysis to its rename pins with array references. Finally, the
model C code is generated.

Figure 4 shows an example of this transformation from Liberty
format to equivalent C code. This automatically generated model
not only includes the logic function of each gate, but encompasses
the timing information as well. For validation, the generated code
can be directly compared to the provided gate library definition.
With automatic model generation, an end-user can experiment with
many different gate libraries. This allows the simulated model to
be consistent with the gates used during fabrication.

By creating an automatic generation tool, we have remove the
need for a human to hand write model code. For example, the
LSI-10K library (discussed in Section 5) details 163 different logic
gates. The model code describing this library is over 9,000 lines-of-
code. The flexibility of our approach allows for any standardized
library to be used within ROSS by simply running a script. In the
remainder of this section we describe the important elements of this
model generation process.

4.1 Pin Names
The pins associated with a particular logic gate are guaranteed to

have unique names. These names can be easily alphabetized, cre-
ating a lexicographical ordering. It is this alphabetically order that
maps pin names to array indices. This name mapping takes place
when a boolean expression (i.e., the logic function for an output
pin) is converted to the equivalent C representation.

For example, take a Liberty defined OR gate with two input pins,
A and B, and one output pin Z (see Figure 4). This becomes an in-
stantiation of a generic gate model with an input pin array of size
two and an output pin array of size one. Any reference to pin A is
transformed to a reference to input[0], pin B becomes input[1],
and pin Z becomes output[0]. Thus, the logical OR function
defined by the Liberty description ("A+B") is rewritten using the
boolean operations available in C: (input[0] || input[1]).

4.2 Predefined LPs Types
Circuit design netlists are made up of a few components: gates,

wires, and input and output connections (external to the current
circuit). Each gate or “net” in a netlist becomes an LP during sim-
ulation (defined by the generic gate model). Straight wires (wires
connecting two pins) do not become LPs and instead the direct con-
nection information is stored within a gate’s state. In contrast, wires
which represent a fanout (where one output pin connects to two or
more input pins) do become LPs. These fanout LPs, along with
special input and output LPs are treated as generic gate types that
are not defined by the Liberty gate library. Instead, they created by
default during automatic model generation.

4.2.1 Input and Output LPs
Input LPs represent signals coming from other circuit compo-

nents. In the example discussed in Section 5, these LPs randomly
feed high and low signals into the circuit during simulation.

Output LPs represent signals exiting the current circuit module.
Currently these LPs act as a sink for any incoming signals.

4.2.2 Fanout LPs
In most circuit designs, there is no fanin. That is, a single input

pin on any gate is connected to only one wire. This is not the case
for fanout as one output pin may connect many wires, each leading
to separate input pins. These fanout wires are represented as LPs



void gates_event(gate_state *s, message *in_msg){

if (in_msg ->type == LOGIC_MSG) {
int in_pin = in_msg ->id;

if (s->inputs[in_pin] == in_msg ->value) return; // no change for input pins

int rising = (s->inputs[in_pin] < in_msg ->value);

// save current state of input and internal pins in case of reverse event
// we store old values in the current message , which is used during reverse
SWAP (&(s->inputs[in_pin ]), &(in_msg ->value));
if (gate_internal_size[s->gate_type] > 0) {

in_msg ->internal_pin0 = s->internals [0];
in_msg ->internal_pin1 = s->internals [1];

}

// perform logic operation
logic_function_array[s->gate_type ](s->inputs , s->internals , s->output_val);

// send messages to my output pins
for (int i = 0; i < gate_output_size[s->gate_type ]; i++){

// calculate the delay for outgoing signals
float delay = delay_function_array[s->gate_type ](in_pin , i, rising);
// ...

}

Figure 2: Snippet of generic gate forward event handler.

void gates_event_rc(gate_state *s, message *in_msg){

if (in_msg ->type == LOGIC_MSG) {

if (s->inputs[in_msg ->id] == in_msg ->value) return;

// restore the state of input and internal pins
SWAP (&(s->inputs[in_msg ->id]), &(in_msg ->value));
if (gate_internal_size[s->gate_type] > 0) {

s->internals [0] = in_msg ->internal_pin0;
s->internals [1] = in_msg ->internal_pin1;

}

// No need to undo changes to output pins
// ROSS handles event causality

}
}

Figure 3: Snippet of generic gate reverse event handler.

which simply forward an incoming signal to all connected outputs.
These LPs use an event delay which is smaller than the smallest
gate delay in the current library.

5. ILLUSTRATIVE EXAMPLE
To understand the value of using automatic model generation, we

compare an automatically generated model to a handwritten one.
A comparison of the details of these two models can be seen in
Table 1. Both models were used to simulate the crossbar switch
(CCX) from the OpenSPARC T2 processor [38]. The simulations
of the CCX models lasted for 3,000 simulation time units which
is equivalent to 3,000 clock cycles for the handwritten model and
3000 ns for the automatically generated model. Both models use a
similar round-robin style partitioning scheme. This scheme makes
no attempt to group the LPs by communication patterns and leads
to a very high percentage of messages set to an LP within another
MPI rank.

Table 1: Detail comparison between a handwritten simplifi-
cation of a GTECH model and an automatically generated
timing-accurate LSI-10K model. These details are from the
simulation of the crossbar switch module from an OpenSPARC
T2 processor.

Handwritten GTECH Auto-Generated
Simplified Model LSI-10K Model

Gate Count 211,001 200,981
Net Events 1.4 Billion 0.2 Billion
Time Unit Clock Cycle Nanosecond

Lookahead 0.4 0.009

The handwritten model used as the basis for comparison has
been previously presented in [19]. This model was a dramatic sim-
plification of the GTECH standard cell library provided by Synop-
sis [37]. While the GTECH library contains over 100 gates, the



cell(OR2) {
pin(A) {

direction : input;
}
pin(B) {

direction : input;
}
pin(Z) {

direction : output;
function : "A+B";
timing () {

intrinsic_rise : 0.38;
intrinsic_fall : 0.85;
related_pin : "A";

}
timing () {

intrinsic_rise : 0.38;
intrinsic_fall : 0.85;
related_pin : "B";

}
}

}
(a) LSI-10k Liberty code

void OR2_func
(int input[], int internal[], int output []) {

//Z : A+B
output [0] = (input [0] || input [1]);

}

float OR2_delay_func
(int in_pin , int out_pin , int rising) {

//[’Z’]
if (out_pin == 0) {

//[’B’]
if ( in_pin == 1 ) {

if (rising) return 0.38;
if (! rising) return 0.85;

}
//[’A’]
if ( in_pin == 0 ) {

if (rising) return 0.38;
if (! rising) return 0.85;

}
}

}
(b) The corresponding, automatically generated C code

Figure 4: Example of an OR logic gate defined in the LSI-10k Liberty library and the automatically generated functions used by the
ROSS generic gate model. Note that one can do a line-by-line comparison to validate both the logic and timing information.

handwritten model consisted of an over decomposition of each logic
gate into one of eight basic gates: repeater, not, and, nand, or,
nor, xor, and xnor. This decomposition transformation was accom-
plished by a parser provided by Li et al. [29] and is written in Lex
and Yacc [28].

Due to a lack of timing information for the GTECH library, a
very simplistic timing model was used, with each logic gate hav-
ing a uniform, single clock-cycle delay. This delay was achieved
through the use of self-scheduled wakeup messages. These mes-
sages carried no logic, but contributed to a large event population
for the simulation as a whole. This simplistic timing model also
had an effect on the lookahead value that could be used for conser-
vative simulation. With such a regularly timed model, lookaheads
of 0.4 time units were used. This is quite large in comparison to the
average event “in-flight” time of 0.5 time units.

For our automatically generated model, we use the LSI-10K li-
brary written in Liberty format [30]. This generated model is ap-
proximately 10,000 lines of code. This code includes the logic
function for each gate type, as well as a function to calculate a
gate’s internal delay (see Figure 4). The generated C code can be
compared on a line-by-line basis with the Liberty library descrip-
tion for verification of both the logic and timing information.

For any automatically generated model, the lookahead value used
during conservative simulation must be derived from the timing
values in the provided gate library. Within the LSI-10K model,
the smallest defined timing delay is 0.01 ns. Thus we safely set the
lookahead window at 0.009 ns for this model. The smaller looka-
head window represents an increase of fidelity of the timing be-
havior model. In this respect, the automatically generated model is
nearly 50 times more accurate than the handwritten model.

We have shown that the automatically generated model leads to
an accurate representation of the gates being modeled and sim-
ulated. The next task is to determine any effects the automati-
cally generated model on simulation performance. We address this
by recreating and comparing results with an experiment described
in [19], where a handwritten gate model was used.

5.1 Experimental Setup
The circuit design chosen was the CCX component of the

OpenSPARC T2 processor. We start with the open source RTL de-
scription. This source was then synthesized into a gate-level netlist
using the Synopsys Design Compiler and the selected gate library
(either GTECH or LSI-10K).

The experiments with the handwritten model were performed
on an IBM Blue Gene/L with cores operating at 700 MHz [19].
This supercomputer debuted in 2004 as the first of its class. It was
designed around a relatively slow processor speed, allowing for a
lower overall power consumption [18]. It also introduced a system-
on-a-chip design, with all node components (including two proces-
sor cores) embedded in one chip. These nodes were connected to
several global communication networks, including a separate net-
work for global MPI communications (e.g., all reduce).

To create a similar experimental setup, the automatically gener-
ated model was run on an IBM Blue Gene/Q machine, with cores
running at 1.6 GHz. This is the latest edition of the IBM super-
computer line. The Blue Gene/Q features 18 processor cores per
chip [20]. 16 of the 18 cores are devoted to application use; one
core is dedicated to operating system functionality; the final core
is a spare, used when another core within the chip fails. While the
Blue Gene/Q is capable of running up to four hardware threads per
core, this work only uses one hardware thread per core (i.e., one
MPI rank per core).

On both Blue Gene systems, ROSS benefits from the high-speed
communication networks [7,21]. For these results and the previous
results pertaining to the handwritten model, we use the terms MPI
rank and core interchangeably.

5.2 Results
To understand the impact on overall simulation performance of

an automatically generated model, we examine the relationship be-
tween the performance of optimistic and conservative simulation.
Figure 5 shows the optimistic/conservation comparison during strong
scaling for the handwritten model. Here, conservative performance
continues to improve as parallelism increases. In contrast, as par-



Figure 5: Single crossbar experiments on 700 MHz Blue
Gene/L cores. Inputs are generated randomly every two sim-
ulation time units. This experiment was originally published
in [19].

Figure 6: Single crossbar experiments on 1.6 GHz Blue Gene/Q
cores. Inputs are generated randomly every two simulation
time units. Note that the lower event rate (when compared to
Figure 5) is due to a decrease in overall event population as well
as an increase in event complexity.

allelism increases optimistic simulation never outperforms conser-
vative and in fact becomes under decomposed and experiences a
decrease in performance.

Optimistic simulation is usually expected to outperform conser-
vative. This result was attributed to the over-simplification of the
handwritten model. As concluded in [19]:

“The lookahead of 0.4 time units (in relation to the timestamp
increment of 0.5 time units) is in the medium to large range, based
on the performance study by Carothers and Perumalla [11]. From
this study, we note that conservative synchronization outperforms
optimistic synchronization for medium and large lookahead up to
8,192 cores. We observe the same phenomena here. Should the

Figure 7: This graph shows the total number rollback events as
a sum of the primary and secondary rollbacks. Note that there
are total of 200 million net events in the simulation.

lookahead become smaller due to changes in the model or core
count increase, we expect optimistic performance to improve and
potentially overtake conservative performance.”

We can now demonstrate the observation that a smaller looka-
head value will positively affect optimistic performance.

Figure 6 compares optimistic and conservative simulation per-
formance for the automatically generated model. Here, optimistic
synchronization outperforms conservative performance. Again, there
is the same increase, then decrease in optimistic performance as
number of MPI ranks grows. We can again contribute this to the
fact that the overall model is small, on the order of 200,000 total
LPs. With more than 128 MPI ranks, the model is under decom-
posed and the communication overhead of synchronization out-
weighs the total work done on any individual core.

A greater understanding of the under decomposition which oc-
curred during the optimistic simulations can be gained through an-
alyzing the rollbacks. Figure 7 shows that the total number of roll-
backs as a sum of the primary and secondary rollbacks. It is impor-
tant to remember that the number of net events in a full run of the
simulation is 200 million. At 256 MPI ranks, optimistic simulation
experiences approximately 100 million rollback events, on the or-
der of one half the total number events which need to be processed.
Put another way, for event two events which are processed, one of
them is eventually rolled back. It is at this point (256 MPI ranks)
that we begin to see a decrease in overall optimistic simulation per-
formance.

We can further explore the relationship between primary and sec-
ondary rollbacks by analyzing them as a percentage of total roll-
backs (seen in Figure 8). For the two experiments where optimistic
simulation improves with parallelism (64 and 128 MPI ranks), less
than half of the total rollbacks are secondary rollbacks. This means
that most anti-messages were received before their counterpart for-
ward message was processed by the receiving LP. The large por-
tion of secondary rollbacks for the large experiments indicates that
some MPI ranks within simulation are much farther ahead in time
than others.



Figure 8: This graph shows the percentage breakdown of the
total number of rollback events in terms of primary and sec-
ondary rollbacks. The large percentage of secondary rollbacks
indicate a large disparity of virtual time across different MPI
Ranks.

6. RELATED WORK
Automatic model generation is not a new area of study. The idea

of predefining a conceptual (or generic) model shows up in many
fields where simulation is an important part of a larger workflow.
One such example comes from supply chain management [42].
This work identifies the key elements of the supply chain and how
they relate to each other. With the generic definitions in place, it is
possible to simulate the specifics of any number of configurations.

For decades, automatic model processing has been a part of the
circuit design process (refer to Figure 1). This includes everything
from generating behavior models within proprietary systems [25]
to generating the schematic diagrams [1] to extracting a gate model
from an existing transistor design [27]. Automatically generating
gate level models for sequential circuit simulation has not been ex-
tensively studied academically, but is a highly patentable area (most
recently in [15]).

Parallel digital logic simulation is a highly investigated area of
research. This includes several investigations of the merits of both
conservative and optimistic synchronization algorithms [3, 4, 14,
32]. The findings are usually mixed as both methods have their
merits and either one may be more suitable for a particular cir-
cuit model. More recently, research has focused on improving the
performance of optimistic simulation through a bottom-up imple-
mentation of a digital logic-specific simulation framework [2, 29,
33, 43].

7. CONCLUSIONS
In a typical integrated circuit design workflow, gate-level sim-

ulation is done using proprietary, domain-specific simulation soft-
ware. By creating a generic model and the tools required for pars-
ing domain-specific descriptions, we have enabled substantial in-
creases in modeler efficiency through the use of a high performing
PDES implementation. The automatic model generation tool al-
lows for any gate model written in Liberty to be realized in the
ROSS framework. This flexibility will allow for an increase in use-

fulness of simulation within the circuit design and verification cy-
cle.

In this paper we have described a generic model for gate-level
circuit simulation within a conservative and reverse-computation-
based optimistic simulation engine. This generic model is coupled
with an automatic system which can generate model details from
a Liberty-formated gate library. The accuracy of the automatically
generated model can be validated through a side-by-side compar-
ison of the original Liberty description and the resulting C code.
This model also allows for greater precision in the model of timing
behavior, which is evident in lookahead value used by conservative
simulation.

To investigate the performance impact of the automatically gen-
erated model we compared the relationship of optimistic and con-
servative simulation performance to an existing set of results which
used a handwritten model. The experiments conducted for this pa-
per were preformed on an IBM Blue Gene/Q and represent some of
the first PDES results on this machine. We found that the increased
accuracy of model timing (and decrease in lookahead window size)
contributed to improved performance of optimistic simulation over
conservative simulation. We observed that when the high-fidelity
model was executed on 128 MPI ranks, optimistic outperformed
conservative simulation by a factor of 3.3. As the number of MPI
ranks increased, to a maximum of 1024 ranks, optimistic did not
drastically outperform conservative simulation due to a substantial
increase in primary and secondary rollbacks.
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