
NeMo: A Massively Parallel Discrete-Event Simulation
Model for Neuromorphic Architectures

Mark Plagge
plaggm@rpi.edu

Christopher D. Carothers
chrisc@cs.rpi.edu

Elsa Gonsiorowski
gonsie@rpi.edu

Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, New York 12180-3590

ABSTRACT
Neuromorphic computing is a non-von Neumann architec-
ture that mimics how the brain performs neural network
types of computation in real hardware. It has been shown
that this class of computing can execute data classification
algorithms using only a tiny fraction of the power a con-
ventional CPU would use to execute this algorithm. This
raises the larger research question: how might neuromorphic
computing be used to improve the application performance,
power consumption, and overall system reliability of future
supercomputers? To address this question, an open-source
neuromorphic processor architecture simulator called NeMo
is being developed. This effort will enable the design space
exploration of potential hybrid CPU, GPU, and neuromor-
phic systems. The key focus of this paper is on the design,
implementation and performance of NeMo. Demonstration
of NeMo’s efficient execution on 1024 nodes of an IBM Blue
Gene/Q system for a 65,536 neuromorphic processing core
model is reported. The peak performance of NeMo is just
over two billion events-per-second when operating at this
scale.

Keywords
neuromorphic architecture; massive parallel; discrete-event;
time warp; reverse computation; biocomputing; neural net
architecture; non von Neumann architecture; neurosynaptic
core

1. INTRODUCTION
In recent years, a new type of processor technology has

emerged called neuromorphic computing. This new class of
processor provides a brain-like computational model that
enables complex neural network computations (e.g., data
classification) to be done using significantly less power than
von Neumann processors [23]. For example, IBM has created
an instance of the TrueNorth architecture [1, 2, 10,11] that
has 5.4 billion transistors arranged into 4,096 neurosynaptic
cores with a total of 1 million spiking neurons and 256 million

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’16, May 15–18, 2016, Banff, Alberta, Canada.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3742-7/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901378.2901392

reconfigurable synapses. This architecture consumes only
65 mW of power when executing a multi-object detection
and classification program using real-time video input (30
fps) for 400×240 pixel images. TrueNorth could run for over
one week on a single charge inside today’s smartphones. For
a list of TrueNorth-capable algorithms and applications, see
Esser et al. [15].

This extremely low-power data analytics capability is par-
ticularly interesting as next generation High Performance
Computing (HPC) systems are about to experience a radical
shift in their design and implementation. The current con-
figuration of leadership class supercomputers provides much
greater off-node parallelism than on-node parallelism. For
example, the 20 PFLOP “Sequoia” Blue Gene/Q supercom-
puter located at LLNL has over 98 thousand compute nodes
with each compute node providing at most 64 threads of
execution. In order to reach exascale compute capabilities, a
next generation system must be 50 times more power efficient.
This dominating demand for power efficiency is resulting in
future designs that dramatically decrease the number of com-
pute nodes while increasing the computational power and
number of processing cores. Case in point, a recent NASA
vision report [42] predicts that exascale class supercomputers
in the 2030 time frame will have only 20,000 compute nodes
and the number of parallel processing streams per node will
rise to nearly 16,000.

To meet the computational demands of these future designs,
it has become a widely held view that on-node accelerator pro-
cessors, in close coordination with multi-core CPUs, will play
an important role in compute-node designs [42]. These accel-
erators are currently used in two forms. The first are Graph-
ical Processing Units (GPUs) that offer a single-instruction-
multiple-data approach to parallelism, which matches the
execution paradigm of graphics applications. GPUs offer
a massive amount of numerical compute power at a very
affordable price. The second form of compute node accel-
erators is a mesh processor architecture such as the Intel
Phi [13]. Here, a collection of lower clock-rate x86 cores are
interconnected over an on-chip mesh network.

Given the advent of neuromorphic computing, future re-
search will need to address how might a neuromorphic pro-
cessor be used as an accelerator to improve the application
performance, power consumption, and overall system reliabil-
ity of future exascale systems. This systems design question
is driven by the recent DOE SEAB report on HPC [27]. This
report highlights the neuromorphic architecture as a key tech-
nology (especially in the next generation of supercomputing
systems) for large-scale data processing.

To address this larger research question, an open-source
processor architecture simulation framework is being de-

233

veloped as part of the Super-Neuro research project (see:
https://sites.google.com/site/superneuromorphic/). This ef-
fort will combine a number of modeling and simulation com-
ponents to enable the design space exploration of potential
hybrid CPU, GPU and neuromorphic supercomputer systems.
The key focus of this paper is on the design, implementation
and performance of the neuromorphic architecture modeling
component called NeMo. In particular, the key contributions
of this paper are:

• The design and implementation of an event-driven neu-
romorphic processor architecture model that is able to
execute in parallel using optimistic event scheduling [28]
and reverse computation [9].

• An initial validation of NeMo’s neuron model against
the well known Izhikevich model [11,24]. The Izhike-
vich model exhibits well-known features of biological
spiking neurons. In particular, phasic spiking and tonic
bursting models are validated.

• A demonstration of NeMo’s efficient execution on up to
1024 Blue Gene/Q nodes for a 65,536 core neuromorphic
processor model performing an “identity matrix” type
neuron computation that generates a significant amount
of neuron firing traffic. The peak performance of NeMo
is over two billion events per second when operating at
this scale.

The design, implementation and integration of CPU, GPU
and network modeling components as part of the Super-Neuro
project will be presented in other papers and is beyond
the scope of the research presented here. The remainder
of this paper is organized as follows. Section 2 presents
NeMo’s neuron model which is derived from the model used
in the TrueNorth processor [11] followed by the discrete-event
implementation in Section 3. The validation and performance
results are then presented in Sections 4 and 5. Last, related
work and conclusions are presented in Sections 6 and 7,
respectively.

2. BACKGROUND
Parallel Discrete-Event Simulations (PDES) consist of Log-

ical Process (LP) objects which communicate through mes-
sages or events. The LPs both encapsulate state and perform
any computations within the simulation. However, in order
for an LP to perform a computation or change its state, it
must be triggered by an event. Thus, changes throughout the
simulation system occur via events flowing from one LP to
another. When preforming a parallel simulation, LP objects
are placed on separate nodes connected across a network.
While it is easy to ensure that events local to a node are in
serial order, hiccups occur when events are arriving from the
network.

PDES synchronization algorithms are used to keep sim-
ulation progress in sync across parallel nodes. Optimistic
synchronization algorithms, such as Time Warp [28], do not
keep each of the parallel nodes in lock step, but instead allow
them to process events as they arrive. Nevertheless, there are
still periods of global synchronization, called Global Virtual
Time (GVT) calculation phases. The GVT calculations find
the lowest timestamp on any unprocessed event. This allows
the simulation system to reclaim memory from processed
events.

Since there are no guarantees of global in-order execution
of events, an LP may process a sequence of events out of
serial order. To remedy this, the Time Warp algorithm keeps

track of inter-event causality and requires LPs to have a
“recovery mechanism” [30].

One method of LP recovery is called reverse computa-
tion [9]. This method uses a function to “un-process” a given
event. This allows LPs to reverse the effects of a series
of events and begin forward event processing with a more
correct ordering.

When an LP detects out-of-order event, the event is said
to cause the LP to rollback. This rollback may require that
certain messages be canceled. This cancellation process is
done through anti-messages. Within Time Warp systems
there are two categories of rollbacks [18]:

• Primary Rollback
A rollback triggered by receiving a late message. For
an LP at time t, a primary rollback occurs when it
receives an event at a time less than t. This may cause
some anti-messages to be sent.

• Secondary Rollback
A rollback triggered by an anti-message corresponding
to a message which has already processed by an LP.

2.1 ROSS
Rensselaer’s Optimistic Simulation System, ROSS, is a

prominent PDES engine [4, 7, 9, 22]. This ANSI C engine
includes a reversible random number generator and is de-
signed for fast and efficient performance. ROSS performs
optimistic simulation using the Time Warp algorithm with
reverse computation. ROSS implements many other PDES
scheduling algorithms, including the conservative YAWNS
protocol [36, 37]. ROSS has been shown to be remarkable
scalable [3].

2.2 Neuromorphic Computing Models
NeMo’s neuromorphic processor architecture model is de-

rived from the general neuron-synaspe-axion behavior used in
the IBM TrueNorth processor [1, 10]. The TrueNorth Leaky
Integrate and Fire (TNLIF) model is further derived from
the Leaky Integrate and Fire (LIF) model [11]. We begin
with an overview of hardware-based neuromorphic processor
systems. We then present the LIF model, followed with
details on the TNLIF model.

2.2.1 Neuromorphic Hardware
Neuromorphic computing refers to hardware implementa-

tions of cognitive computing techniques. More specifically,
the goal of neuromorphic computation is the design and de-
velopment of neuron inspired hardware in an energy efficient
package [33].

Neuromorphic hardware development has significantly pro-
gressed, giving rise to new processor designs [1, 33, 34, 38].
These hardware designs are based on spiking neural networks.
Spiking neural networks have input, internal connections, and
output components. Input elements are referred to as axons,
output elements are called neurons, and the connectors be-
tween axons and neurons are called synapses. Signals sent
from a neuron are generally referred to as “spikes,” as they
are treated as binary signals. These terms stem from more
general Artifical Neural Network (ANN) models, which in
turn are borrowed from neuroscience [40]. Neuromorphic
processors operate on a synchronized clock, allowing them to
receive, process, and send new messages in between external
clock cycles. For example, the TrueNorth hardware archi-
tecture has an external clock rate of 1 kHz, allowing each
neuron to receive and send a spike 1,000 times per second [1].

The current generation of neuromorphic hardware imple-
ments a spiking neuron model with binary outputs. Signals

234

Integration:

Vj(t) = Vj(t− 1)

n−1∑
i=0

[xi(t) si] (1)

Leak:

Vj(t) = Vj(t)− λj (2)

Threshold Check and Spike:

if Vj(t) ≥ αj (3)

Spike

Vj(t) = Rj (4)

end if (5)

Figure 1: Leaky integrate and fire general neuron
model

enter an axon, are passed to a synapse, then are processed
by a neuron. The neurons in these models currently manage
all of the computation—axons and synapses merely act as a
signal transfer service to the neuron [21].

NeMo acts as a neuromorphic processor simulation model.
It designed not as a complete, cycle-accurate, hardware sim-
ulation, but as a generic neuromorphic hardware simulator
that implements the TNLIF neuron model described in [11].

The NeMo model can simulate neuromorphic processors
of arbitrary dimensions, allowing for novel processor per-
formance benchmarking. NeMo also has the ability to add
message processing inside the axons and synapses, potentially
simulating more powerful or energy efficient neuromorphic
processors, as described in [21]. This is in contrast to the
COMPASS simulator, presented in [39], which is designed for
spike accurate TrueNorth hardware simulations.

2.2.2 The LIF Neuron Model
The LIF model is a simple neuron model that is able to

emulate some biological neuron functions [25]. Because it is
so straightforward (and does not rely on partial differential
equations), the LIF model is used in most neuromorphic
hardware.

Neurons that implement the LIF model follow a simple
pattern of execution, shown in Figure 1 [43]. Execution
consists of an integration period, leak calculations, threshold
checking, firing, and then reset. In Figure 1, the general form
of the neuron equations are presented. During integration,
shown in Equation (1), the neuron updates its internal volt-
age based on each synapse i’s synaptic weight, si. This is
calculated based on the synapse’s activity at time t, shown
as xi(t) in Equation (1). Next, the LIF neuron calculates
leak, by subtracting the set leak value, λ, from the current
membrane potential, shown in Equation (2). Next, in Equa-
tion (3), the neuron checks the threshold value, α, against
the current membrane potential. If the current membrane
potential is greater than α, the neuron spikes. If the neuron
spikes, Equation (4) executes, setting the neuron membrane
potential to the reset voltage, Rj . This model forms the
basis of the TNLIF neuron model, and thus the basis of the
NeMo simulation model.

2.2.3 The TrueNorth Neuron Model
The TNLIF neuron model is a significantly enhanced ver-

sion of the simple LIF model. NeMo fully implements this
neuron model. In Figure 2, the full TrueNorth neuron model

is presented. Functions used in this model include signum:

sgn(x) =


−1, x < 0

0, x = 0

1, x > 0

a comparison function for stochastic operations:

F (s, p) =

{
1, |s| ≥ p
0, |s| < p

and the Kroneker delta function: δ(x).
The TNLIF neuron model features a fully connected “neu-

rosynaptic crossbar.” This crossbar connects each input axon
with all neurons. When an axon receives a spike, it sends
signals to all connected synapses. The neuron integration
equation is presented in Equation (6). At time t, if an axon
,i, is active, the synaptic activity, Ai(t), is 1, otherwise it is 0.
In the equation, wi,j represents connectivity between axons
and neurons. If wi,j is 1, there is a connection between axon
i and neuron j. If the value is 0, there is no connection.

Each neuron assigns a type, represented by Gi, to each
axon. Weights are then assigned to each axon type. Gi is
limited to four types, therefore each axon may be assigned
one of four different weights by each neuron. Neuron weights
are stored as signed integers, shown in the equation as sGi

j .

bGi
j sets deterministic or stochastic integration mode. If

the value is 0, neurons update their membrane potential
by taking the sum of each axon multiplied by each axon’s
weight:

∑n−1
i=0 [sGi

j](Ai(t)wi,j)
Neurons can be configured to use stochastic synaptic and

leak integration. Setting bGi
j = 1 enables stochastic synaptic

integration and setting cλj = 1 enables stochastic leak inte-
gration. Stochastic integration functions similarly for both
leak and synaptic weight. For each integration event (either
a synaptic weight or a leak computation), a random number
is drawn and stored as pj . If the drawn random number

is higher than the relevant weight (synaptic weight sGi
j or

leak weight λj), then the neuron adds sgn(λ) or sgn(sGi
j)

to its membrane potential. Synapse integration is shown in
Equation (6), and leak integration is shown in Equations (7)
and (8).

The TNLIF neuron model enhances the leak functionality
of the LIF model by adding positive or negative leak values,
and a “leak-reversal” ability. Normal leak operation calcu-
lates the sign of the leak value λ, stores this value as Ω, and
then integrates this value into the neuron’s membrane po-
tential. Leak sign calculation is shown in Equation (7), and
integration is shown in Equation (8). Leak-reversal mode
changes the behavior of the leak function such that if the
neuron has a positive membrane potential, λ is integrated
directly, but if the neuron has a negative membrane potential,
−λ is integrated. In addition, if the membrane potential of
a neuron is 0, then no leak is applied.

In addition to the deterministic threshold modes available,
the TNLIF neuron model provides a stochastic threshold
mode. Here, ηj is added to αj and βj . Then, ηj is calculated
every cycle by first generating a random number value, pTj ,

then taking the bitwise AND of Mj and pTj , as seen in
Equation (9). In Equations (10) and (12), ηj is added to the
threshold values before they are checked against the neuron
membrane potentials.

The TNLIF model also adds two new reset modes to the
standard LIF model. TNLIF supports normal reset mode, a
linear reset mode, and a non-reset mode. These values are

235

Integration:

Vj(t) = Vj(t− 1) +

n−1∑
i=0

[
Ai(t)wi,j

[
(1− bGi

j) sGi
j + bGi

j F (sGi
j , pi,j) sgn(sGi

j)
]]

(6)

Leak Integration:

Ω = (1− εj) + εj sgn(Vj(t)) (7)

Vj(t) = Vj(t) + Ω
[
(1− cλj)λ+ cλj F (λj , p

λ
j) sgn(λj)

]
(8)

Threshold, Fire, Reset:

etaj = pTt &Mj (9)

if Vj(t) ≥ α+ ηj (10)

Spike

Vj(t) = Rj + δ(γj − 1) (Vj(t)− (α+ ηj)) + δ(γj − 2)Vj(t) (11)

else if Vj(t) < − [βjκj + (βj + ηj)(1− κj)] (12)

Vj(t) = −βj κj + [−δ(γj)Rj + δ(γj − 1) (Vj(t) + (βj + ηj)) + δ(γj − 2)Vj(t)] (1− κj) (13)

end if

Figure 2: TrueNorth leaky integrate and fire neuron model (TNLIF)

chosen through the variable γj , and used in Equations (11)
and (12). Normal mode follows the standard LIF model.
Linear reset mode subtracts the threshold value from the
membrane potential. In non-reset mode, the membrane
potential is not changed after a spike. These reset modes add
additional functionality to the standard LIF neuron model.

TNLIF adds a negative threshold feature to the LIF. This
negative threshold value is represented by βj , an unsigned
integer. This gives neurons the ability to have a membrane
potential floor or a “bounce” feature. In the case of a floor
setting, neurons with membrane potentials below −βj will set
their values at −βj . If the setting is set to a “bounce” value

”
the neuron’s membrane potential is reset to −βj . The mode
is set by changing the value of κj . Equation (12) shows the
negative threshold check, and Equation (13) shows negative
threshold reset and saturation.

The enhancements to the LIF model provided by TNLIF
improves its flexibility and power. The additional stochastic
integration and threshold features allow the TNLIF model
to emulate continuous weight functions. Furthermore, the
stochastic features allow neural networks trained with tra-
ditional backpropagation techniques to run directly on the
hardware [16]. Cassidy et al. demonstrated the flexibility
and power of this neuron model in [11] and Akopyan et al.
implemented this model in hardware in [1].

The TNLIF model was originally developed through a
software simulation tool called Compass [39]. Compass is a
software tool provided by IBM to allow developers of neu-
romorphic software the ability to run code on a simulated
TrueNorth processor. Compass is closed-source and propri-
etary, but there are some benchmarks available in [10, 39].
Further discussion of Compass along with comparisons to
NeMo can be found in Section 5.4.

3. NeMo DISCRETE-EVENT IMPLEMEN-
TATION

Based on the TNLIF model presented in the previous
section, the neuromorphic architecture model is realized as a
discrete-event simulation using ROSS [3,4, 8].

The TNLIF model has specific limitations due to its imple-

mentation in hardware. NeMo, however, is not designed as
a simulation of the TrueNorth processor hardware, rather it
is a more generic neuromorphic processor simulation model.
With this set of design considerations, NeMo implements all
of the features of the TrueNorth model. In addition, NeMo
does not have the bit length constraints that are part of
TrueNorth. NeMo may have a 64-bit signed integer value
for weights, thresholds, and pseudo-random numbers. Fur-
thermore, while NeMo operates with the same conceptual
neurosynaptic crossbar that TrueNorth uses, the crossbar
can be set to an arbitrary size, constrained only by memory.
This allows NeMo to simulate neurosynaptic cores of any size.
For the purposes of our benchmark runs, we set the num-
ber of neurons to 256, the same that TrueNorth hardware
implements.
NeMo is also capable of simulating compute-on-synapse

event models. This feature gives NeMo the ability to execute
operations at the synapse or axon level, allowing for more
complex neurosynaptic chip designs to be simulated.
NeMo partitions the model of a neuromorphic processor

into individual components. Each axon, synapse, and neuron
are modeled as a unique Logical Process (LP) type. By
having individual elements of the neuromorphic chip run-
ning as individual LP types, NeMo is able to add processing
features to the synapses and axons. Furthermore, advanced
axon → synapse → neuron connections could possibly be
modeled. A collection of axons, synapses, and neurons are
contained within a logical container, referred to as a neurosy-
naptic core. NeMo can model thousands of neurosynaptic
cores with each core containing hundreds of neurons and
axons and tens of thousands of synapses.

The remainder of this section discusses the implementa-
tion of NeMo. This includes the forward and reverse event
functions for ROSS as well as a discussion on techniques
used to prevent excessive message generation using a fanout
technique to maintain a stable message population.

3.1 Forward Event Computation
For the benchmarking and testing of NeMo, we imple-

ment a model with similar capabilities as the TNLIF model.
Therefore, we do not add any computation to the axon and

236

Save Current Voltage
In Message

Integrate
Synapse Weight

Synapse
Message

Heartbeat
Message Sent?

No

Get

Set

Set

Get
AxonID

Get

No

Yes

Set

Get Get/Set

Yes

Set

Synapse Message Control Flow Heartbeat Message Control Flow

Voltage
1

2

3

4

5

7

Leak Calculation

14

Save Current
Membrane Potential

8

Find Current Time
10

Calculate Time
Differential td

11

Get Fire
Send Message to
configured Axon

16Reset
17

Negative
Threshold Check

18

is

15
Send Heartbeat

Message

6

Heartbeat
Message

9

Last Active Time

12

Time Differential

13

Get

Set

Yes

No

Neuron LP Event Handler

Figure 3: The NeMo neuron event flow. Details of each block, numbered 1 through 18, are discussed in
Section 3.1.

synapse LPs. Section 3.1 shows the logical layout of neurons,
axons, and synapses on a neurosynaptic core. When an axon
receives a message it relays the message to each synapse in its
row. In this model, the synapses simply relay any received
message to the neuron in their column. Like the TNLIF
model, there are no computations that occur when axons
and synapses receive events; they simply relay thier messages
to the next element in the model.

In Figure 3, Blocks 1–18, we show the NeMo neuron model
control flow for the forward event handler. The flow starts
at the current simulation time, t, where t is measured in
microseconds. If t > 1, there has been at least one neurosy-
naptic tick since the simulation has started. There are two
event types that neurons receive: synapse messages and heart-
beat messages. Synapse messages are set at a nanosecond
resolution, with events occurring at t + 0.0001 + ε. Heart-
beat messages are sent at a larger time-slice, t+ 0.1 + ε. In
Figure 3, the synapse message processing is represented on
the left column, and heartbeat messages are shown on the
right. We use ε to represent a “jitter” factor, an extremely
small random value used to ensure a deterministic ordering
of events.

The synapse message process begins in Block 1, when the
neuron receives a synapse message. The neuron first saves
the current voltage value, Block 2, a double precision floating
point value Vj , in the synapse message, Block 3. This is to

facilitate reverse computation, by saving Vj in the message,
when rolling back messages neurons are able to revert changes
made during forward computation.

The neuron then performs the integration function, shown
in Figure 3 as Block 4. This updates Vj with a new value,
computed by the integration function defined in Equation (6).

Neuron heartbeat messages are NeMo’s technique to syn-
chronize neuron firing. In an LIF model, neurons integrate,
leak, fire, and reset at specific intervals. To increase per-
formance, a heartbeat message is sent only when a neuron
activates. In Block 5, the neuron checks if it has already sent
a heartbeat message. If it has not, it schedules a heartbeat
message at t+ 0.1 + ε, in Block 6. This action completes the
neuron’s integration function for a particular axon. By exe-
cuting this flow every time an axon message is received, NeMo
recreates the integration formula in Figure 2, Equation (6).

When a heartbeat message is received, as shown in Block
7, the neuron begins its leak, fire and reset function. The
neuron also saves its current membrane potential in the
received message Blocks 8 and 9.

The neuron then finds the current neurosynaptic time
in Block 10. This is computed as btc. In Block 11, the
neuron calculates a time differential, td. This value represents
how many neurosynaptic clock cycles have passed since this
neuron has been active. By taking the last active time value,
Block 12, and subtracting the current time, the neuron is

237

able to determine how many times it needs to run the leak
calculation, shown in Block 13. The neuron uses this time
differential value to compute leak. By using a loop, the
neuron is able to run the leak function, shown in Equations (7)
and (8), td times, bringing its voltage to where it would have
been if the neuron had been calculating the leak function in
a synchronous fashion. This loop is shown in Block 14.

Once the neuron has computed the leak function, it pro-
ceeds to check the positive threshold Block 15, and either fire
and reset, or just move on to the negative threshold check. If
vj > threshold, the neuron will fire Block 16 and reset Block
17. A fire operation schedules a new message with ROSS at
the next neurosynaptic clock time. Since the neurosynaptic
clock operates at the integer scale, simply adding 1 + ε to
the current time will schedule the fire event at the proper
future time.

After the neuron completes the fire/reset functions, it
then checks for negative threshold overflows Block 18. If
the neuron’s voltage is beyond the negative threshold, the
neuron performs the negative threshold integration functions
specified in Equation (13).

The neuron has now completed one neurosynaptic tick.

3.2 Reverse Computation
Reverse computation is handled through swapping states

at key points in the neuron process and using bitfields to
manage secondary state changes. The primary state change
that occurs is Vj , the neuron’s voltage. Neurons also contain
a flag, marking when a neuron has sent itself a heartbeat
message. When performing reverse computation, neurons
must revert changes to both of these state elements.

Whenever a neuron receives a message from a synapse or
receives a heartbeat message, before any changes are made
to Vj , it saves the current current voltage in the incoming
message. During reverse computation, neurons restore the
saved voltage from the message. This reverts all integration,
leak, and reset functions that changed Vj .

When a neuron receives a synapse message for the first
time, it checks to see if it has sent a heartbeat message. If it
has not, it changes an internal flag, and sends the message.
The neuron also changes the flag when receiving a heartbeat
message. Neurons record boolean flag changes in a bitfield
in the incoming message. If there is a non-zero entry in the
bitfield during reverse computation, the flag state is toggled.

3.3 Fanout
Since NeMo has individual LPs configured for each com-

ponent, simulations have a large number of LPs running
simultaneously. There are 2,164,260,864 LPs in our largest
simulation experiment. If NeMo sent messages at every time
stamp, it would send 66,048 messages per neurosynaptic
core per tick. This large event population quickly becomes
unmanageable due to memory constraints. To counter this,

Axons Synapses

0 0,0 0,1 . . . 0, n
1 1,0 1,1 . . . 1, n
...

...
...

...
...

n n, 1 n, 2 n, 3 n, n

Neurons 0 1 . . . n

Figure 4: A matrix representation of a neurosynap-
tic core.

Figure 5: Example event chain in NeMo with 3 neu-
rons per neurosynaptic core. In this diagram, an
event is received at Axon 0 within a core at time t.
At t+0.0001+ε Axon 0 sends a message to Synapse 0,0.
Synapse 0,0 then sends a message at t+ 0.0002 + ε to
Neuron 0 and Synapse 0,1. Synapse 0,1 sends mes-
sages to Neuron 1 and Synapse 0,2 at t + 0.0003 + ε.
Synapse 0,2 then sends a message to Neuron 2 at
t + 0.0004 + ε. If no messages are received on Axon
1 and 2, no messages are sent. Neurons will send
outgoing spike messages, if applicable, at t+ 1.0 + ε.

NeMo implements a fanout technique for message transmis-
sion based on work done in [29].

In Figure 5, an example of the fanout message technique
is shown. Here we see a neurosynaptic core with three axons,
nine synapses, and three neurons. When a message is received
by an axon, it sends an axon message to the first synapse in
the neurosynaptic core at time T + 0.0001 + ε. The synapse
then sends two messages: first to the neuron attached to it,
second to the next synapse in the row, at T + 0.0002 + ε.
The next synapse does the same, until the final synapse has
been reached. This technique generates far fewer messages,
preventing memory usage issues.

4. VALIDATION
Izhikevich implemented and reviewed 20 prominent fea-

tures of biological neurons using a resonate-and-fire model [26].
The TNLIF model was used to recreate many of these be-
haviors, demonstrating the utility and validity of the TNLIF
model [11]. NeMo, unlike Izhikevich’s model and the Com-
pass simulator used in [11], simulates TNLIF neurons using
discrete events. Due to this difference, it is impossible to
exactly replicate Izhikevich’s models. Neurons only update
internal state when an input message is received or if they

238

are a self-firing neuron. However, we do recreate the neuron
behavior observed by [11] in the TrueNorth neuron model.

To validate NeMo, we implemented two of the Izhikevich
models Cassidey et al. implemented in [11]. Our goal was
to match the behavior of these models, showing that NeMo
correctly simulates the TNLIF model. To do this, we used
similar parameters to the ones used in [11].Phasic spiking
neurons were configured using the values shown in Table 1.
A single axon was connected to this neuron that sent spikes
out every 200 ticks. The results of this run are shown in
Figure 6.

Table 1: Phasic Spiking Neuron Parameters.

Parameter Neuron 0 Value

Synaptic Weights
(
sGi
j

)
0,20,0,0

Leak Value (λ) 2
Positive Threshold (α) 2
Negative Threshold (β) -10

Reset Voltage (Rj) -15

Reset Mode
Normal
Negative Saturation

Phasic Spiking Simulation Run

No
rm

al
ize

d
M

em
br

an
e

Po
te

nt
ia

l

0

11

22

Simulation Ticks
0 500 1000

Membrane Potential
Output Spike

Figure 6: Izhikevich phasic spiking validation run.

We then implemented a tonic bursting neuron, again fol-
lowing the specifications set by [11]. In this configuration, we
used two neurons and three axons. One axon was configured
to send input spikes every 300 ticks. The neuron parameters
used for this validation run are shown in Table 2, and the
voltage results are shown in Figure 7.

The information shown in Figures 6 and 7 visually presents
neuron behavior that is nearly identical to the behavior
observed in [11]. Slight differences in the values are a result
of neurons updating state only when events warrant. We also
do not record the membrane potential of the input axons.
Despite this, we do see qualitatively similar neruon behaviors.
Thus, the NeMo simulation model is able to recreate the
simulation results from [11].

5. EXPERIMENTAL PERFORMANCE
It is important to understand the performance of NeMo

within massively parallel simulations. We first examine a
weak scaling experiment, where we simulate up to 32,768

Table 2: Tonic Bursting Neuron Parameters.
Parameter Neuron 0 Value Neuron 1 Value

Synaptic Weights
(
sGi
j

)
1, -100, 0, 0 1, 0, 0, 0

Leak Value (λ) 1 0
Positive Threshold (α) 18 6
Negative Threshold (β) 20 0

Reset Voltage (Rj) 1 0

Reset Mode
Normal
Negative Saturation

Normal
Negative Saturation

Tonic Bursting Simulation Run

No
rm

al
ize

d
M

em
br

an
e

Po
te

nt
ia

l

1

4

7

10

13

16

19

22

Simulation Ticks
0 500 1000

Membrane Potential
Output Spike

Figure 7: Izhikevich tonic bursting validation run.

neurosynaptic cores. Next we examine the strong scaling
performance of a 8,192 neurosynaptic core simulation.

5.1 Experimental Setup
For each of the following experiments, we simulate

TrueNorth-like neurosynaptic cores using the ROSS frame-
work. Each neurosynaptic core connects 256 axon LPs, 65,536
synapse LPs, and 256 neuron LPs for a total of 66,048 LPs
per core. We perform experiments with up to 32,768 neu-
rosynaptic cores, giving a maximum number of 2,164,260,864
LPs in our largest simulation.

To fully test the performance of our model, we used a
neurosynaptic core model which generates over 1,500 events
per neurosynaptic core per tick. For this benchmark, each
core consists of an“identity-matrix”of neurons. In this model,
axon i will trigger synapse i, i, which triggers the neuron at
i (see Section 3.1). The output destination of each neuron
is set randomly with an 80% chance that it will output to
a different neurosynaptic core. To start, each axon in the
simulation fires. Overall, this creates an immense number
of events, a larger workload than would be expected in a
real-world application.

All simulations were performed on an IBM Blue Gene/Q
machine. Each node of the Blue Gene/Q features eighteen
1.6 GHz processor cores, 16 of which are devoted to appli-
cation use [20]. For the two remaining cores, one conducts
operating system functionality while the other serves as a
spare. All nodes are connected by an effective, high-speed
communication network [12].

The 16 GB of DDR3 memory on each Blue Gene/Q node
can be a limiting factor in memory intensive simulations. To
allow for maximum utilization, each node is highly config-
urable in terms of parallelism. Each of the 16 processors can
run up to 4 hardware threads (for a total of 64 MPI ranks
per node) or the processor cores can be under-subscribed

239

Weak Scaling Performance

W
al

l C
lo

ck
 T

im
e

(S
ec

on
ds

)
70

14
0

21
0

28
0

35
0

Ev
en

t R
at

e
(m

illi
on

s/
se

c)

0

525

1050

1575

2100

Blue Gene/Q Nodes 
Neurosynaptic Cores Simulated

16 
1024

32 
2048

64 
4096

128 
8192

256 
16384

512 
32768

1024 
65536

64 MPI Ranks per Node
32 MPI Ranks per Node
32 MPI Ranks Wall Clock Time
64 MPI Ranks Wall Clock Time

Figure 8: Weak scaling performance experiments.

Table 3: Breakdown of time spent during the sim-
ulation of 65,536 neurosynaptic cores on 1024 Blue
Gene/Q nodes each with 64 MPI ranks.

Time Taken
Clock Cycle Category (seconds) Percentage
Priority Queue (enq/deq) 1.8825 0.86%
AVL Tree (insert/delete) 0.0192 0.01%
Event Processing 38.2921 17.52%
Event Cancel 0.7486 0.34%
GVT 154.6155 70.75%
Fossil Collect 12.7742 5.85%
Primary Rollbacks 5.1278 2.35%
Network Read 5.0715 2.32%

(with a minimum of 1 MPI rank per node). Our experiments
test several parallel configurations.

All experiments were performed using the time-warp based
optimistic synchronization algorithm in ROSS.

5.2 Weak Scaling Experiment
Our first set of experiments tested two configurations: one

and two neurosynaptic cores per MPI rank. These configura-
tions ran on either 64 or 32 MPI ranks per Blue Gene/Q node,
scaling from 16 to 1024 Blue Gene/Q nodes (see Figure 8).
We achieved a peak performance of over 2 billion events
per second when simulating 65,536 neurosynaptic cores on
1024 Blue Gene/nodes with 64 MPI ranks per node. These
experiments simulated a total of 1,000 neurosynaptic core
ticks.

Table 3 presents a breakdown of time spent during our
peak performance simulation. These statistics are represen-
tative of all of our weak scaling experiments. The most
noteworthy statistic is the time that the ROSS simulator
spent performing GVT calculations. With less than 20%
of simulation time being spent performing local event pro-
cessing, we observe over 70% of the simulation time is spent
performing GVT calculations. Since the GVT calculation is
based around an MPI_all_reduce calculation, this indicates
that there is a load imbalance within the simulation. That is,
not all MPI ranks are reaching the blocking MPI reduction
operation at the same time.

Strong Scaling Performance

Ev
en

t R
at

e
(m

illi
on

s/
se

c)

0

125

250

375

500

Blue Gene/Q Nodes
16 32 64 128 256 512 1024

8192 Neurosynaptic Cores Simulated

Figure 9: Strong scaling performance experiments.

The slight load imbalance is to be expected. Every time
a neuron fires, it has an 80% chance to send a signal to a
neuron within a different synaptic core. Since the location
of the receiver neuron is also chosen randomly, there is in
an unpredictable, yet expected load imbalance across the
simulation.

5.3 Strong Scaling Experiment
To understand the ways in which the NeMo model scales as

parallelism increases, we ran a series of strong scaling experi-
ments. Figure 9 shows performance results for a simulation
of 8,192 neurosynaptic cores using 16 to 1,024 Blue Gene/Q
nodes. These experiments were run for 1,000 ticks resulting
in more than 13 billion net events. We achieved peak perfor-
mance when we used 1,024 Blue Gene/Q nodes, where we
observed over 421 million events per second. This benchmark
was run with the same randomly generated neuron model
as the weak scaling experements, with an 80% chance of
neurons communicating to remote cores. One interesting
thing to note is that NeMo does not place a neurosynaptic
core across multiple MPI ranks. This is a limiting factor in
the strong scaling results, as simulating 8,192 neurosynaptic
cores gives a maximum of 8,192 MPI ranks. When running
on 512 Blue Gene/Q nodes, there are 32,768 possible MPI
ranks, and on 1,024 nodes there are 1,048,576 ranks available.
We ran at these scales with 8,192 ranks, and the lack of
increase in performance is attributable to this limitation in
the NeMo system.

One interesting phenomena is observed when analyzing the
running time and efficiency of the strong scaling experements,
Figure 10. Here, we see that an unexpected correlation
between overall simulation efficiency and the running time of
the simulation: a decrease in efficiency corresponds to faster
running times. This indicates a very low cost for performing
an event rollback. Overall, the optimistic simulation is able
to find more parallelism (and thus more speedup) despite
incurring an increased number of rollback events.

Figure 11 shows a breakdown of the rollbacks observed
during the strong scaling experiments. At first the number of
rollbacks does increase as the parallelism increases however all
experements on 128 nodes or more each incur approximately
7.7 million rollbacks. This indicates that our simulations
have a maximum amount of parallelism where increases in
hardware do not correlate to increases in performance.

240

Efficiency Compared to Running Time  
for Strong Scaling Experiments

R
un

ni
ng

 T
im

e
(s

ec
)

0

45

90

135

180

Ef
fic

ie
nc

y
Pe

rc
en

ta
ge

0%

25%

50%

75%

100%

Blue Gene/Q Nodes
16 32 64 128 256 512 1024

Efficiency
Wall Clock Simulation Time

Figure 10: Comparison of the efficiency and the run-
ning time of the strong scaling experiments.

Rollbacks During  
Strong Scaling Experiments

M
illi

on
s

of
 R

ol
lb

ac
ks

0

2

4

6

8

Blue Gene/Q Nodes
16 32 64 128 256 512 1024

Primary Rollbacks
Secondary Rollbacks

Figure 11: Breakdown of the primary and secondary
rollbacks for the strong scaling simulation. Note
that the net event population for these experiments
is 13 billion events, but the maximum number of
rollbacks observed is only 7.6 million.

Both Figure 10 and Figure 11 show that increasing the
number of parallel nodes is only effective up to a point. At
more than 128 Blue Gene/Q nodes, we see diminishing re-
turns in performance scaling. In the 128 node experiment,
each node simulates 64 neurosynaptic cores. We see that
the overall workload is balanced (i.e., there is no decrease in
performance which would indicate an over decomposition of
the system). For the 128, 256, 512, and 1,024 node experi-
ments, the communication overheads surpass the time spent
doing local event processing. What is most intriguing about
these experiments is that the number of rollbacks remains
constant, despite an increase in parallelism.

5.4 Comparison with COMPASS
Comparing NeMo with IBM’s own simulation software,

Compass, poses some challenges. The intention of NeMo is to
provide an open-source way to simulate various neuromorphic
hardware designs. The Compass simulator is tuned for a
similar purpose, but is tied into the TrueNorth architecture.
Furthermore, Compass is proprietary software that we are
unable to use on our benchmarking hardware. IBM Blue
Gene/Q support for Compass was also eliminated in favor of
focusing support on x86 architectures. These factors make a
meaningful direct comparison impossible. However, in [39],
benchmark runs of Compass are done using several models.
Using these existing benchmarks, we can create a rough
comparison between NeMo and Compass.

While both NeMo and Compass can exploit massively
parallel supercomputer systems like the Blue Gene/Q, there
are a number of key differences between the two. First,
Compass employs a time-stepped algorithm which iterates
over the set of neurons assigned to a particular thread (or
MPI rank) and then iterates over each synaspe event that
targets that neuron from the enclosing iteration loop. NeMo
is implemented using a pure event-driven approach with all
neuron, axon and synapse events being enqueued into a single
priority queue. This approach avoids the cost of iterating
over neurons which do not have any posted synaspe events.

In [39], Compass weak-scaling benchmarks are presented
using the CoCoMac neuron model. We do not have access to
the specific implementation details of the neuron model used
in the paper, so we can not explicitly re-create the author’s
benchmarks in NeMo. CoCoMac is a message-sparse model,
generating on average 1.3 spikes per simulated neurosynaptic
core [39].

Given that we are not able to run the same model and we
are not able to run Compass on our benchmark hardware, we
have decided to compare the events per second produced by
Compass with NeMo. To find this value for Compass, we took
the number of spike events per simulated tick reported in [39]
and made some reasonable assumptions about the underlying
model. We took the values from the largest run of Compass
that ran on 16 racks of IBM Blue Gene/Q that generated 22
million spikes per simulated tick. The paper does not specify
if that value is for all spikes generated simulating the model,
or if it was for remote-core spikes (spikes originating on a
different node than the destination). To compare NeMo’s
performance with Compass, we will assume the best-case
scenario for Compass: that the 22 million spikes generated
are only the remote spikes. The paper further specifies that
the CoCoMac model simulated has some cores that generate
a ratio of 80 remote spikes to 20 local spikes, and other
cores that generate a 60/40 ratio. For the purposes of our
comparison, we assume a best-case scenario for Compass and
assume a 50/50 ratio of remote spikes versus local spikes.
This assumption would mean that the 22 million spikes per
simulated tick would be 50% of the total spikes generated
by the simulation. For comparison, our benchmark model
generated an average of 80% remote spikes per core.

The set of equations that approximate the performance
of the Compass simulation are shown in Figure 12. To find
the number of events per second, we assume that 1 axon and
256 synapse fan-out events, f are scheduled for each spike
s event over the paper’s reported 500 ticks tsim, shown in
Equation (14). We also multiply the total spikes reported,
etotal by 2, per our assumption that 50% of the spikes are
not remote. We then divide the calculated total number of
events by the wall clock time taken by Compass, twall to get
the spikes per second, esecond, shown in Equation (15). We
then divide by the number of Blue Gene/Q racks used in

241

etotal = sreported × 2× f (14)

esecond = stotal/t (15)

esecond/rack = esecond/16 (16)

Figure 12: Calculating Compass’s events per second
per Blue Gene/Q Rack

the simulation r, to get Compass’s events per second per
rack, shown in Equation (16). The complete equation used
is shown in Figure 12.

These values were chosen to help represent the number
of events NeMo produces. For every neuron spike event in
NeMo, there are 256 neuron events generated with one axon
event. Our largest current NeMo simulation ran on one rack
of Blue Gene/Q, thus comparing Compass’s event rate per
rack p er second will provide a roughly accurate gauge of
performance.

This gives ((22M×2×257)×500 ticks)/ 194 secs/16 racks =
1, 821M events/ second/ rack. Our benchmark runs of NeMo
showed an event rate of 2, 082M events/ rack. The weak
scaling experements run on NeMo show 261M events per
second more than Compass. While a direct comparison
between NeMo and Compass is currently impossible, this
result shows that NeMo is on par with the performance of
Compass, and a viable option for simulation of neuromorphic
hardware.

6. RELATED WORK
As indicated previously, the core neuron model of NeMo

is based on the IBM TrueNorth chip which has a “spike”
accurate simulator called Compass [10]. A detaled analysis
of the differences between Compass and NeMo can be found
in section 5.4.

A similar hardware specific neuromorphic system is the
SpiNNaker Project [19]. SpiNNaker is a specialized machine
that is designed to optimally transmit a very large number
of very small packets to enable models of how the brain
performs communication operations as part of an overall
neuron/brain modeling capability. Here, 40 byte packets
are efficiently transmitted across to 1 million processing
cores. The machine is organized into “nodes” similar to
a Blue Gene/Q except that the core processing engine of
each node is 18 ARM968 processor cores. Each ARM core
has 96 KB of local memory and 128 MB of shared memory
across all the processors. SpiNNaker reports being able
to model on a single core several hundred point neurons
performing calculations on par with Izhikevich’s model with
about 1,000 input synapses to each neuron. This fan-out is
about four times as big as currently supported in TrueNorth.
However, the power consumed by SpiNNaker is much greater
by several orders of magnitude. A 1,200 board system where
each board support 48 nodes which can model on the order
of 10 to 20 million neurons consumes 75,000 W of power
whereas TrueNorth only consumes 65 mW (or 0.065 W) for
256 thousand neurons.

Future neuromorphic hardware predictions where recently
made by Hasler and Marr [21]. Here, they present a road map
for the construction of large-scale neuromorphic hardware
systems. The metric used in this road map is called a MMAC
which is a unit of neuromorphic computation in the “millions”
of neural multiple and accumulate operations. Hasler and
Marr argue that if computation were done not only in the
neurons but in the dendrites which sit between the neuron

cell (e.g., soma) and synapses, then it is possible to perform
one million MAC operations per picawatt of power. This
scale of computational power in equivalent to performing an
exa-MAC or 260 MAC operations per watt of power which is
on par with the computational power efficiency of the human
brain.

In the computational neuroscience community, there are
a number of spiking neuron simulators available that are
using various modeling approaches to understand the bio-
logical function of neurons, dendrites, synapses, and axons.
The most well known is NEURON [5] which is a simulation
framework for creating and investigating empirically-based
models of biological neurons and neural circuits. NEURON
offers users the ability to select which numerical integration
method to apply in solving the model equations. The default
approach is an implicit Euler method. In [35], NEURON
was extended to enable parallel neuron network simulations
where each processor performs its own local equation inte-
gration over a subset of the neuron network. On the Blue
Gene/P supercomputer it exhibited nearly linear speedup
on 2,000 processing cores. Recently, Zhongwei et al. [31],
constructed a multithread version of NEURON for reaction
diffusion models that are implemented using a Time Warp
with state-saving approach.

There has been work on simulating spiking neural networks
using GPU acceleration as well. The “nemo” project, [17],
uses GPU acceleration to simulate over 40,000 Izhkavitch neu-
rons in a biologically plausible network. The “nemo” project
is designed to accelerate simulation of biologically accurate
neural networks, whereas our NeMo project is tuned to sim-
ulate neuromorphic hardware design. GPU acceleration for
simulation of spiking neural networks is promising [6], and
further work might be considered in simulating neuromor-
phic hardware using PDES techniques in tandem with GPU
acceleration.

The Blue Brain Project1 has attained world wide atten-
tion for its goals to construct high-fidelity, supercomputer-
powered models of the human brain. This software is based
on NEURON and uses the same numerical integration ap-
proaches. However, their brain models models can require
very large data sets because each neuron and synapse is
distinct [41] which results in the cellular model for a hu-
man brain requiring 100 PB of storage. This amount of data
could be considered each and every time-step by the equation
solvers in the Blue Brain simulator.

Finally, the only other optimistic neuron model with re-
verse computation is by Lobb et al. [32]. In this 2005 PADS
Best Paper work, a Hodgkin-Huxley (HH) neuron model is
implemented which demonstrates the performance viability
of this approach. Speedups are demonstrated on an 8 node
PIII cluster ranging from 1.5× to 3.5× for HH networks sizes
of 25 to 400 neurons.

7. CONCLUSIONS & FUTURE WORK
We have presented NeMo, an open source2 discrete event

simulation model implemented using the ROSS simulation
framework that allows for large scale, flexible, simulation
of neuromorphic processors. This simulation model allows
for the creation of arbitrarily sized neuromorphic processors
based on the TNLIF neuron model. This simulation model
will allow experimentation with new neuromorphic processor
designs with new and novel problem domains.

The results of this work show that discrete event simulation
is a viable option for simulation of massive neuromorphic

1Source: http://bluebrain.epfl.ch. Accessed on: Jan 4, 2016.
2Available At: https://github.com/markplagge/NeMo

242

systems. Near linear scaling was achieved running NeMo on
a Blue Gene/Q system with weak scaling. Our largest run of
NeMo simulated 32,768 neurosynaptic cores, each containing
256 neurons, 65,536 synapses, and 256 axons, for 1,000 neu-
rosynaptic ticks. The largest run simulated 8,338,608 neurons
and axons with 2,147,483,648 synapses with an event rate of
just over 1 billion events per second. Larger simulations are
possible, along with different neurosynaptic core designs.
NeMo is also capable of simulating new configurations of

neuromorphic hardware. The number of neurons per neu-
rosynaptic core can be set to any value within the limits of
64 bit computer hardware. Furthermore, experiments can
be done simulating neuromorphic processors that process
messages upon receipt, allowing for “what-if” hardware de-
signs. Since NeMo is built with the ROSS discrete event
simulation framework, integration between NeMo and su-
percomputer simulation systems is possible. Combining the
NeMo simulation model with a supercomputer design simula-
tor will allow for experimentation with hybrid neuromorphic
supercomputer designs.

One of the goals of NeMo is the ability to simulate differ-
ent neuron models and hardware configurations. With this
future goal in mind, NeMo has been designed to allow for
the addition of other neuron models. The first model imple-
mented is the TNLIF neuron model [11]. However, NeMo’s
neuron simulation is modular, allowing for new models to be
“plugged-in” to the simulation. NeMo is capable of simulating
any spiking neuron model, and is even capable of having mul-
tiple neuron types per neurosynaptic core. The next steps
for NeMo include the addition of Izhikevich’s simple spiking
neuron models, as defined in [24].

Additionally, the design of NeMo’s message passing system
does leave room for performance improvement. Significant
simulation time is spent in GVT. Switching from ROSS’s
event based GVT to a real-time GVT algorithm potentially
could improve execution speed. Further enhancements could
be made to the way the neurosynaptic crossbar is imple-
mented. Currently, NeMo forwards messages from synapses
to neurons regardless if the neuron will act on the message.
Adding connection information to the synapse would reduce
message traffic, and potentially increase performance.

Finally, the other major goal of NeMo is to present it as a
stand-alone simulation framework. Eventually NeMo should
give users the ability to design and simulate custom neuro-
morphic hardware designs in an accessible way. We plan
to add support for a high-level API, such as PyNN [14], or
potentially a custom framework for describing neuromorphic
hardware. We are also investigating including other neu-
ron model support in NeMo, with the intention of creating
a versatile neuromorphic hardware design simulation tool.
Adding these features will be a major focus in the future
work for this project.

8. ACKNOWLEDGMENTS
This work was supported by the Air Force Research Labo-

ratory (AFRL), under award number FA8750-15-2-0078.

9. REFERENCES
[1] F. Akopyan, J. Sawada, et al. TrueNorth: Design and

tool flow of a 65 mW 1 million neuron programmable
neurosynaptic chip. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 34(10):1537–1557, 2015.

[2] A. Amir, P. Datta, et al. Cognitive computing
programming paradigm: A corelet language for

composing networks of neurosynaptic cores. In IJCNN
’13, pages 1–10, Aug 2013.

[3] P. D. Barnes, Jr., C. D. Carothers, D. R. Jefferson, and
J. M. LaPre. Warp speed: Executing time warp on
1,966,080 cores. In ACM SIGSIM PADS 2013, pages
327–336, Montreal, Canada, May 2013.

[4] D. Bauer, C. Carothers, and A. Holder. Scalable time
warp on blue gene supercomputers. In
ACM/IEEE/SCS PADS ’09, pages 35–44, Lake Placid,
NY, USA, 22–25 June 2009.

[5] R. Brette, M. Rudolph, et al. Simulation of networks of
spiking neurons: A review of tools and strategies.
Journal of Computational Neuroscience, 23(3):349–398,
December 2007.

[6] K. D. Carlson, M. Beyeler, N. Dutt, and J. L.
Krichmar. GPGPU accelerated simulation and
parameter tuning for neuromorphic applications. In
ASP DAC ’14, pages 570–577. IEEE, 2014.

[7] C. Carothers, D. Bauer, and S. Pearce. Ross: A
high-performance, low memory, modular time warp
system. In ACM SIGSIM PADS ’00, pages 53–60,
Bologna, Italy, 28–31 May 2000.

[8] C. Carothers, D. Bauer, and S. Pearce. Ross: a
high-performance, low memory, modular time warp
system. In ACM SIGSIM PADS ’14, pages 53–60, 2000.

[9] C. Carothers, K. Perumalla, and R. Fujimoto. Efficient
Optimistic Parallel Simulations Using Reverse
Computation. In ACM SIGSIM PADS ’99, pages
126–135, Atlanta, GA, USA, 5 1999.

[10] A. S. Cassidy, R. Alvarez-Icaza, et al. Real-time
scalable cortical computing at 46 giga-synaptic
ops/watt with 100x speedup in time-to-solution and
100,000x reduction in energy-to-solution. In ACM SC
’14, pages 27–38, Piscataway, NJ, USA, 2014. IEEE
Press.

[11] A. S. Cassidy, P. Merolla, et al. Cognitive computing
building block: A versatile and efficient digital neuron
model for neurosynaptic cores. In IEEE IJCNN 2013,
2013.

[12] D. Chen, N. Eisley, P. Heidelberger, R. Senger,
Y. Sugawara, S. Kumar, V. Salapura, D. Satterfield,
B. Steinmacher-Burow, and J. Parker. The IBM Blue
Gene/Q Interconnection Network and Message Unit. In
ACM SC ’11, pages 1–10, Seattle, WA, USA,
12–18 Nov. 2011.

[13] G. Chrysos. Intel R© Xeon PhiTM coprocessor-the
architecture. Intel Whitepaper, 2014.

[14] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow,
E. Muller, D. Pecevski, L. Perrinet, and P. Yger. Pynn:
A common interface for neuronal network simulators.
Frontiers in Neuroinformatics, 2(11):1–10, 27 Jan. 2009.

[15] S. Esser, A. Andreopoulos, et al. Cognitive computing
systems: Algorithms and applications for networks of
neurosynaptic cores. In The 2013 Int. Joint Conference
on Neural Networks, pages 1–10, Aug 2013.

[16] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur,
and D. S. Modha. Backpropagation for energy-efficient
neuromorphic computing. In Advances in Neural
Information Processing Systems 28, NIPS ’15, pages
1117–1125. Curran Associates, Inc., 2015.

[17] A. K. Fidjeland, E. B. Roesch, M. P. Shanahan, and
W. Luk. NeMo: A platform for neural modelling of
spiking neurons using gpus. In IEEE ASAP 09., pages
137–144, July 2009.

[18] R. M. Fujimoto. Parallel and Distributed Simulation

243

Systems. John Wiley & Sons, Inc., New York, NY,
USA, 1st edition, 1999.

[19] S. Furber, F. Galluppi, S. Temple, and L. Plana. The
spinnaker project. Proceedings of the IEEE,
102(5):652–665, May 2014.

[20] R. A. Haring, M. Ohmacht, T. W. Fox, M. K.
Gschwind, D. L. Satterfield, K. Sugavanam, P. W.
Coteus, P. Heidelberger, M. A. Blumrich, R. W.
Wisniewski, et al. The ibm blue gene/q compute chip.
Micro, IEEE, 32(2):48–60, 2012.

[21] J. Hasler and H. B. Marr. Finding a roadmap to
achieve large neuromorphic hardware systems.
Frontiers in Neuroscience, 7(118), 2013.

[22] A. O. Holder and C. D. Carothers. Analysis of Time
Warp on a 32,768 Processor IBM Blue Gene/L
Supercomputer. In Proc. 20th Eur. Modeling and
Simulation Symp., EMSS ’08, pages 284–292, Amantea,
Italy, 17–19 Sept. 2008.

[23] G. Indiveri, B. Linares-Barranco, et al. Neuromorphic
silicon neuron circuits. Frontiers in Neuroscience, 5,
2011.

[24] E. Izhikevich. Simple model of spiking neurons. Neural
Networks, IEEE Transactions on, 14(6):1569–1572, Nov
2003.

[25] E. Izhikevich. Which model to use for cortical spiking
neurons? Neural Networks, IEEE Transactions on,
15(5):1063–1070, Sept 2004.

[26] E. M. Izhikevich. Resonate-and-fire neurons. Neural
Networks, 14(6–7):883 – 894, 2001.

[27] S. A. Jackson, M. McQuade, R. Shenoy, R. G.
S. Koonin, J. Hendler, P. Highnam, A. Jones, J. Kelly,
C. Mundie, T. Ohki, D. Reed, K. Smith, and J. Tracy.
Report of the task force on high performance
computing of the secretary of energy advisory board.
Technical report, DOE, August 2014.

[28] D. R. Jefferson. Virtual time. ACM Trans. Program.
Lang. Syst., 7(3):404–425, July 1985.

[29] J. M. LaPre, C. D. Carothers, K. D. Renard, and D. R.
Shires. Ultra large-scale wireless network models using
massively parallel discrete-event simulation.
Transactions of The Society for Modeling and
Simulation Int., Oct. 2012.

[30] Y.-B. Lin and E. D. Lazowska. A study of time warp
rollback mechanisms. ACM Trans. Modeling and
Comput. Simulation, 1(1):51–72, Jan. 1991.

[31] Z. Lin, C. Tropper, M. N. Ishlam Patoary, R. A.
McDougal, W. W. Lytton, and M. L. Hines. Ntw-mt: A
multi-threaded simulator for reaction diffusion
simulations in neuron. In SIGSIM PADS ’15, pages
157–167, New York, NY, USA, 2015. ACM.

[32] C. J. Lobb, Z. Chao, R. M. Fujimoto, and S. M. Potter.
Parallel event-driven neural network simulations using
the hodgkin-huxley neuron model. In Principles of
Advanced and Distributed Simulation, 2005. PADS
2005. Workshop on, pages 16–25, June 2005.

[33] P. Merolla, J. Arthur, F. Akopyan, N. Imam,
R. Manohar, and D. S. Modha. A digital neurosynaptic
core using embedded crossbar memory with 45pj per
spike in 45nm. In IEEE CICC ’11 IEEE, pages 1–4,
Sept 2011.

[34] P. A. Merolla, J. V. Arthur, et al. A million
spiking-neuron integrated circuit with a scalable
communication network and interface. Science,
345(6197):668–673, 2014.

[35] M. Migliore, C. Cannia, W. W. Lytton, H. Markram,
and M. L. Hines. Parallel network simulations with
NEURON. Journal of Computational Neuroscience,
21(2):119–129, 2006.

[36] D. Nicol. The Cost of Conservative Synchronization in
Parallel Discrete Event Simulations. J. ACM,
40(2):304–333, Apr. 1993.

[37] D. Nicol and P. Heidelberger. Parallel Execution for
Serial Simulators. ACM Trans. Modeling and Comput.
Simulation, 6(3):210–242, July 1996.

[38] E. Painkras, L. A. Plana, et al. SpiNNaker : A 1-W
18-Core System-on-Chip for Massively-Parallel Neural
Network Simulation. IEEE Journal of Solid-State
Circuits, 48(8):1943–1953, 2013.

[39] R. Preissl, T. M. Wong, P. Datta, M. Flickner,
R. Singh, S. K. Esser, W. P. Risk, H. D. Simon, and
D. S. Modha. Compass: A scalable simulator for an
architecture for cognitive computing. In ACM SC ’12,
pages 1–11, Nov 2012.

[40] J. Schmidhuber. Deep Learning in Neural Networks:
An Overview. arXiv preprint arXiv: . . . , abs/1404.7:66,
2014.

[41] F. Schürmann, F. Delalondre, et al. Rebasing i/o for
scientific computing: Leveraging storage class memory
in an ibm bluegene/q supercomputer. In ICS 15’
Conference Proceedings, ISC 2014, pages 331–347, New
York, NY, USA, 2014. Springer-Verlag New York, Inc.

[42] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal,
W. Gropp, E. Lurie, and D. Mavriplis. Cfd vision 2030
study: A path to revolutionary computational
aerosciences. Technical Report NASA/CR-2014-21878,
NASA, March 2014.

[43] R. Stein, A. S. French, and A. Holden. The frequency
response, coherence, and information capacity of two
neuronal models. Biophysical journal, 12(3):295–322,
1972.

244

