Ada Lovelace's Computer Program Apple Time

Elsa Gonsiorowski

June 23, 2023

Apple Time

$$
\begin{array}{ll}
15 \text { Min } & \text { Short Talk } \\
15 \text { Min } & \text { Breakout } 1 \\
15 \mathrm{Min} & \text { Breakout } 2 \\
10 \mathrm{Min} & \text { Prizes! }
\end{array}
$$

Elsa Gonsiorowski

- HPC I/O Support Specialist in Livermore Computing since 2016
- Develop SCR: Scalable Checkpoint Restart library
- LC Hotline tech
- Excited about emacs, org-mode, static websites, fish shell, cmake, documentation, crossfit, rowing, knitting

Mathematical Tables

- Calculated values of logarithmic and trigonometric functions
- Built by hand by human "computers"
- Used to do rapid multiplication, division, and exponentiation

Charles Babbage and the Difference Engine

■ 1791-1871

- Idea for a Difference Engine to mechanically do the work of human computers
- Began development in 1822
- would have composed 25,000 parts, weighed 15 tons, stood 8 feet tall

Analytical Engine

- Design began in 1833, described in 1837
- General purpose, i.e., Turing Complete
- Arithmetic logic unit, control flow (conditional branching and loops), memory, printer, and bell

Augusta Ada King (née Byron), Countess of Lovelace

■ Dec. 10, 1815-Nov. 27, 1852

- Child of poet Lord Byron and Lady Byron
- 1833: Met Charles Babbage at a party
- 1835: Married William King who became Earl of Lovelace

Babbage and Young Lady Byron

- 1833: Met at a party (Babbage age 41, Ada age 17)
- Ada had extensive mathematics eduction to "ward off wild, romatic sensibility" of her father
- They were in the same social circle and wrote each other frequently

Sketch of the Analytical Engine

SCIENTIFIC MEMOIRS,

selected from

THE TRANSACTIONS OF
FOREIGN ACADEMIES OF SCIENCE
AND LEARNED SOCIETIES,
asd mous
FOREIGN JOURNALS.
edited by
RICHARD TAYLOR, F.S.A.,

UNDER SHCRETARY OT THE LINEAAN BOCIETY.

VOL. III.

LONDON :
printed by richard and join e. taylor. aED hoar coukt, ylaet athemt.

Article XXIX.

Sketch of the Analytical Engine invented by Charles Babbage Esq. By L. F. Menabrea, of Turin, Officer of the Milftary Engineers.
[From the Bibliothìgur Unieerrelle de Ginive, No. 82. October 1842.]
[BEFORE submitting to our readers the translation of M. Menabrea's memoir 'On the Mathematical Principles of the Avalynabrea's memoir 'On the Mathematical Principles of the Avaly-
tical Engine' invented by Mr. Babbage, we shall present to them a list of the printed papers connected with the subject, and also of those relating to the Difference Engine by which it was preceded.
For information on Mr. Babbage's "Difference Engine," which is but slightly alluded to by M. Menabrea, we refer the reader to the following sources:-

1. Letter to Sir Humphry Davy, Bart., P.R.S., on the Application of Machinery to Calculate and Print Mathematical Tables. By Charles Babbage, Esq., F.R.S. London, July 1822. Reprinted, with a Report of the Council of the Royal Society, by order of the House of Commons, May 1823.
2. On the Application of Machinery to the Calculation of Astronomical and Mathematical Tables. By Charles Babbage, Esq.-Memoirs of the Astronomical Society, vol. i. part 2. London, 1822.
3. Address to the Astronomical Society by Henry Thomas Colebrooke, Esq., F.R.S., President, on presenting the first Gold Medal of the Society to Charles Babbage, Esq., for the invention of the Calculating Engine.-Memoirs of the Astronomical Society. London, 1822.
4. On the Determination of the General Term of a New Class of Infinite Series. By Charles Babbage, Esq.-Transactions of the Cambridge Philosophical Society,
5. On Mr. Babbage's New Machine for Calculating and Printing Mathematical Tables.-Letter from Francis Baily, Esq., F.R.S., to M. Schumacher. No. 46, Astronomische Nachrichten. Reprinted in the Philosophical Magazine, May 1824
6. On a Method of expressing by Sigos the Action of Ma-

Bernoulli Numbers

$$
\begin{aligned}
\sum n & =\frac{1}{2} n^{2}+\frac{1}{2} n \\
\sum n^{2} & =\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n \\
\sum n^{3} & =\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}
\end{aligned}
$$

$$
\sum n^{m}=\frac{1}{m+1}\left(B_{0} n^{m+1} \pm\binom{ m+1}{1} B_{1} n^{m}+\binom{m+1}{2} B_{2} n^{m-1}+\ldots\right)
$$

$B_{7}=-1\left(A_{0}+B_{1} A_{1}+B_{3} A_{3}+B_{5} A_{5}\right)$

$$
\begin{aligned}
& A_{0}=-\frac{1}{2} \cdot \frac{2 n-1}{2 n+1} \\
& A_{1}=\frac{2 n}{2} \\
& A_{3}=\frac{2 n(2 n-1)(2 n-2)}{2 \cdot 3 \cdot 4} \\
& A_{5}=\frac{2 n(2 n-1)(2 n-2)(2 n-3)(2 n-4)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}
\end{aligned}
$$

Notes from the Translator

Note A Promise of a machine that can perform arbirtary mathematical operations
Note G Lady Lovelace's Objection - despite it's power, the machine does not "think"
Note D "Diagram of development" for calculating $B_{7}=-1\left(A_{0}+B_{1} A_{1}+B_{3} A_{3}+B_{5} A_{5}\right)$

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)

Program Snippet (GitHub Gist)

```
// ------- A0 -------
/* 01 */ v4 = v5 = v6 = v2 * v3; // 2n
/* 02 */ v4 = v4 - v1;
/* 03 */ v5 = v5 + v1; // 2n + 1
// In Lovelace's diagram, the below appears as v5 / v4, which is incorrect.
/* 04 */ v11 = v4 / v5; // (2n - 1) / (2n + 1)
/* 05 */ v11 = v11 / v2; // (1 / 2) * ((2n - 1) / (2n + 1))
/* 06 */ v13 = v13 - v11; // - (1 / 2) * ((2n - 1) / (2n + 1))
/* 07 */ v10 = v3 - v1; // (n - 1), set counter?
// On the first loop this calculates B3A3 and adds it on to v13.
// On the second loop this calculates B5A5 and adds it on.
while (v10 > 0)
    // ------- B3A3, B5A5 -------
    while (v6 > 2 * v3 - (2 * (v3 - v10) - 2))
    { // First Loop:
        /* 13 */ v6 = v6 - v1; // 2n - 1
        /* 14 */ v7 = v1 + v7; // 2 + 1
        /* 15 */ v8 = v6 / v7; // (2n - 1) / 3
        /* 16 */ v11 = v8 * v11; // (2n / 2) * ((2n - 1) / 3)
    }
    if (v10 == 2) {
    /* 21 */ v12 = v22 * v11; // B3 * A3
    } else {
    /* 21 */ v12 = v23 * v11; // B5 * A5
    }
```


Resources

- What Did Ada Lovelace's Program Actually Do? TwoBitHistory.org
- Sketch of the Analytical Engine
- Translation of Note D to C. (gist)
- Wikipedia

Breakout Discussions

- Introduce yourself to your group; what are you working on this summer?
- What is the most difficult bug you've encountered?
- What is the best thing you've attended so far this summer?

And/or what are you most looking forward to?
Prizes!
A prize will be awarded to anyone who shares their bug story at the end of the hour

