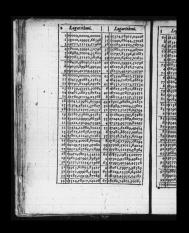
Ada Lovelace's Computer Program Apple Time

Elsa Gonsiorowski

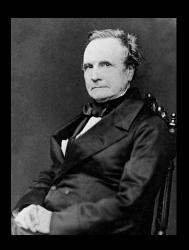
June 21, 2024

Apple Time

```
20 Min Short Talk
15 Min Discussion / Breakout
10 Min Prizes!
```


- Links are in orange
- Full screen is recommended
- Slides available at gonsie.com/talks

Elsa Gonsiorowski


- HPC I/O Support Specialist in Livermore Computing since 2016
- Developer for SCR:
 Scalable Checkpoint
 Restart library
- LC Hotline tech
- Working remotely in RI
- Excited about emacs, org-mode, static websites, fish shell, cmake, documentation, crossfit, rowing, knitting

Mathematical Tables – 200 years ago

- Calculated values of logarithmic and trigonometric functions
- Built by hand by human "computers"
- Used to do rapid multiplication, division, and exponentiation

Charles Babbage and the Difference Engine

- **1791–1871**
- Idea for a Difference Engine to mechanically do the work of human computers
 - Began development in 1822
 - would have composed 25,000 parts, weighed 15 tons, stood 8 feet tall

Analytical Engine

- Design began in 1833, described in 1837
- General purpose, i.e., Turing Complete
- Arithmetic logic unit, control flow (conditional branching and loops), memory, printer, and bell

Augusta Ada King (née Byron), Countess of Lovelace

- Dec. 10, 1815–Nov. 27, 1852
- Child of poet Lord Byron and Lady Byron
- 1833: Met Charles Babbage at a party
- 1835: Married William King who became Earl of Lovelace

Babbage and Young Lady Byron

- 1833: Met at a party (Babbage age 41, Ada age 17)
- Ada had extensive mathematics eduction to "ward off wild, romatic sensibility" of her father
- They were in the same social circle and wrote each other frequently

Sketch of the Analytical Engine

SCIENTIFIC MEMOIRS,

SELECTED FROM

THE TRANSACTIONS OF

FOREIGN ACADEMIES OF SCIENCE

AND LEARNED SOCIETIES.

AVD FROM

FOREIGN JOURNALS.

EDITED BY

RICHARD TAYLOR, F.S.A.,

FELLOW OF THE LINNEAN, GEOLOGICAL, ASTRONOMICAL, ASIATIC, STATISTICAL AND GEOGRAPHICAL SOCIETIES OF LONDON;

UNDER SECRETARY OF THE LINN AN SOCIETY.

VOL. III.

LONDON:

PRINTED BY RICHARD AND JOHN E. TAYLOR,

SOLD BY LONGMAN, GRME, RROWN, GREEN, AND LONGMANS; CADELL; RIDGWAY AND SONS; SHERWOOD, GILBERY, AND FIFES; SHERRIM AND MARHALL; E. PELLOWRS; S. HIGHEST; WEITTAKER AND SO, AND J. R. RILLERE, LONDON; D. C. R. LEINER, LONDON; D. LEINER, LONDON; D. R. LEINER, LONDON; D. LEINER, LONDON; D.

1843

666

ARTICLE XXIX

Sketch of the Analytical Engine invented by Charles Babbage Esq. By L. F. Menabrea, of Turin, Officer of the Military Engineers.

[From the Bibliothèque Universelle de Génève, No. 82. October 1842.]

[BEFORE submitting to our readers the translation of M. Manabrea's memoir 'On the Mathematical Principles of the ALALY-TIGAL ENGINE' invented by Mr. Babbage, we shall present to them a list of the printed papers connected with the subject, and also of those relating to the Difference Engine by which it

For information on Mr. Babbage's "Difference Engine," which is but slightly alluded to by M. Menabrea, we refer the reader to the following sources:—

 Letter to Sir Humphry Davy, Bart, P.R.S., on the Application of Machinery to Calculate and Print Mathematical Tables. By Charles Babbage, Esq., F.R.S. London, July 1822. Reprinted, with a Report of the Council of the Royal Society, by order of the House of Commons, May 1823.

 On the Application of Machinery to the Calculation of Astronomical and Mathematical Tables. By Charles Babbage, Esq.—Memoirs of the Astronomical Society, vol. i. part 2. London, 1822.

 Address to the Astronomical Society by Henry Thomas Colebrooke, Esq., F.R.S., President, on presenting the first Gold Medal of the Society to Charles Babbage, Esq., for the invention of the Calculating Engine.—Memoirs of the Astronomical Society. London, 1822.

 On the Determination of the General Term of a New Class of Infinite Series. By Charles Babbage, Esq.—Transactions of the Cambridge Philosophical Society.

On Mr. Babbage's New Machine for Calculating and Printing Mathematical Tables.—Letter from Francis Baily, Esq., F.R.S., to M. Schumacher. No. 46, Astronomische Nachrichten. Reprinted in the Philosophical Magazine. May 1824.

6. On a Method of expressing by Signs the Action of Ma-

Bernoulli Numbers

$$\sum n = \frac{1}{2}n^2 + \frac{1}{2}n$$

$$\sum n^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$$

$$\sum n^3 = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2$$

$$\sum n^{m} = \frac{1}{m+1} (B_0 n^{m+1} \pm {m+1 \choose 1} B_1 n^{m} + {m+1 \choose 2} B_2 n^{m-1} + ...)$$

$$B_7 = -1(A_0 + B_1 A_1 + B_3 A_3 + B_5 A_5)$$

$$A_{0} = -\frac{1}{2} \cdot \frac{2n-1}{2n+1}$$

$$A_{1} = \frac{2n}{2}$$

$$A_{3} = \frac{2n(2n-1)(2n-2)}{2 \cdot 3 \cdot 4}$$

$$A_{5} = \frac{2n(2n-1)(2n-2)(2n-3)(2n-4)}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}$$

Notes from the Translator

- Note A Promise of a machine that can perform arbirtary mathematical operations
- Note G Lady Lovelace's Objection despite it's power, the machine does not "think"
- Note D "Diagram of development" for calculating $B_7 = -1(A_0 + B_1 A_1 + B_3 A_3 + B_5 A_5)$

Working Variables. Data Result Variables. 1V₃ 1V₁ 0 0 0 1 0000 0V₆ ○ 0 0 0 0 0 0 0 (V12 0000 000 Indication of Variables Variables change in the receiving acted value on any Variable. Statement of Results. results. upon. 2 B Вз Bs 2 2 n

Number of Operation

24

25

+ 1V1 + 1V2 1V2

Nature of Operation

 $\begin{vmatrix} {}^{4}V_{13} = {}^{9}V_{13} \\ {}^{9}V_{24} = {}^{1}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{4}V_{6} = {}^{9}V_{6} \\ {}^{8}V_{7} = {}^{9}V_{7} \end{vmatrix} = n + \frac{1}{2}$

by a Variable card.

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)

UΕ				(1 - 1		_	2				 2					_	150	-	x əlq
	-	1V3 -1V	1V10	$\begin{cases} {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	} = n - 1 (= 3)	1		n			 1	 	n-1						
	; -	V23-2V1	1V 13	$\begin{cases} {}^{2}V_{11} = {}^{0}V_{11} \\ {}^{0}V_{13} = {}^{1}V_{13} \end{cases}$	$\left. \right\} = -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0$						 	 		0	 $-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0$		- 0		
				$\begin{cases} {}^{1}V_{11} = {}^{2}V_{11} \\ {}^{1}V_{21} = {}^{1}V_{21} \end{cases}$	$\left. \right\} = \frac{1}{2} \cdot \frac{2n-1}{2n+1}$		2				 	 		$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$	Propriest Plants bridge		-		
				f 2v _0v	$\left. \cdot \right = \frac{2n-1}{2n+1}$				0	0	 	 		$\frac{2n-1}{2n+1}$	or some buy of				
1	3 +	1V +1V	2V5	$\begin{cases} {}^{1}V_{5} = {}^{2}V_{5} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	= 2 n + 1	1				2 n+1							000		
H	-	1V4 -1V1	2V4	1V, =1V,	= 2 n - 1	1			2n - 1	1	1						10000	197	

8 9 10	÷ ×	1V ₆ +1V ₇	³ V ₁₁	$\begin{cases} {}^{1}V_{6} = {}^{1}V_{6} \\ {}^{1}V_{6} = {}^{1}V_{6} \\ {}^{0}V_{11} = {}^{3}V_{11} \end{bmatrix} \\ {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \end{bmatrix}$	$ \begin{vmatrix} = 2 + 0 = 2 & & \\ = \frac{2n}{2} = A_1 & & \\ = B_1 & \frac{2n}{2} = B_1 A_1 & & \\ = B_1 & B_1 & B_2 & B_1 A_2 & & \\ \end{vmatrix} $		2	 	 2n	2 2				$\frac{2 n}{2} = \Lambda_1$ $\frac{2 n}{2} = \Lambda_1$	$B_1 \cdot \frac{2\pi}{2} = B_1 A_1$		В ₁			
11	+	1V ₁₂ +1V ₁₁ 1V ₁₀ -1V ₁	² V ₁₃	$\begin{cases} V_{12} = V_{12} \\ V_{13} = 2V_{13} \\ V_{10} = 2V_{10} \\ V_{1} = 1V_{1} \end{cases}$	$ \left. \begin{array}{l} = -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} & \dots \\ = n-2 (=2) & \dots \end{array} \right. $	1		 	 				 n - 2		0	$\left\{ -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \right\}$	H and			
13	1-	1V6 -1V1	²V ₆		= 2n - 1			 	 2 n - 1							F 4-				
14	1 +	1V1 +1V7	2V,	$\begin{cases} 1V_1 = 1V_1 \\ 1V_7 = 2V_7 \end{cases}$	2 + 1 = 3	1		 	 	3		-								
15				$\begin{cases} {}^{2}V_{6} = {}^{2}V_{6} \\ {}^{2}V_{7} = {}^{2}V_{7} \end{cases}$	$=\frac{2n-1}{3}$			 	 2n - 1	3	$\frac{2n-1}{3}$					The state of		223	-	
16	1	1V8 ×3V1	W ₁₁	$\left\{ \begin{matrix} {}^{1}V_{8} = {}^{0}V_{8} \\ {}^{3}V_{11} = {}^{4}V_{11} \end{matrix} \right.$	$\left. \right\} = \frac{2n}{2} \cdot \frac{2n-1}{3}$			 	 		0			$\frac{2n}{2} \cdot \frac{2n-1}{3}$						
17	Ir-	2V6 -1V1	3Ve	$\begin{cases} {}^{2}V_{6} = {}^{3}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	= 2 n - 2	1		 	 2n - 2		1				100			1	TY.	
18.	1	1V1 +2V2	3V,	$\begin{cases} {}^{2}V_{7} = {}^{3}V_{7} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	3 + 1 = 4	1		 	 	4	-			(2n 2n-1 2n-2)		o senso los po	- 10	tell o	100	
19	11-	3V6+3V	ıv,	$\begin{cases} 3V_6 = 3V_6 \\ 3V_7 = 3V_7 \end{cases}$	$\left. \cdot \right = \frac{2\pi - 2}{4}$			 	 2n - 2	4		$\frac{2n-2}{4}$		$\left\{\frac{2n}{2}, \frac{2n-1}{3}, \frac{2n-2}{3}\right\}$	1	the same	1	500		

186	ше	. 6	7 8	1 2V. = 2V.	1 3		 	1	 2 n - 1	0	9								
16	1	× 1V ₈ × 3V	11 W		$\left. \right\} = \frac{2n}{2} \cdot \frac{2n-1}{3}$		 		 		0		 $\frac{2n}{2} \cdot \frac{2n-1}{3}$					NI	
17	Ir	- 2V6 -1V	1 3Ve		} = 2 n - 2		 		 2 n - 2								1000	111	
18.		+ 1V1 +2V	, 3V,	$\begin{cases} {}^{2}V_{7} = {}^{3}V_{7} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	} = 3 + 1 = 4		 		 	4					or representations and	- 10	oil a	-	a layer
19	II.	+3Ve+3V	, IV,	$\begin{cases} {}^{3}V_{\varepsilon} = {}^{3}V_{\varepsilon} \\ {}^{3}V_{\tau} = {}^{3}V_{\tau} \end{cases}$	$=\frac{2\pi-2}{4}$		 ·		 2n - 2	4		$\frac{2n-2}{4}$	 $\left\{ \frac{2n}{2} \cdot \frac{2n-1}{3}, \frac{2n-2}{3} \right\}$		and the same		500		
20	1	× 1V, ×41	11 SV 11	$\begin{cases} {}^{1}V_{9} = {}^{0}V_{9} \\ {}^{4}V_{11} = {}^{5}V_{11} \end{cases}$		1,	 		 			0	l = Aa J		C-pushing a	adyti	charte	1000	100
21		× 1V22×5V	11 °V 12	$\left\{ \begin{smallmatrix} 1 V_{22} = 1 V_{22} \\ 0 V_{12} = 2 V_{12} \end{smallmatrix} \right.$		i ₃ Λ ₃ .	 1 :		 				 0	B ₃ A ₃			Ba	200	330
22		+ 2V12+2V	12 SV 13	\ \begin{cases} 2V_{12} = 6V_{12} \\ 2V_{12} = 8V_{12} \\ \ 2V_{12} = 8V_{12} \end{cases}	$= A_0 + B_1 A_1 + B_3 A_3 \dots$		 1		 				 	0	$\{A_3 + B_1 A_1 + B_2 A_3\}$	7 8	1		000

18.	+ 11/1 +21/2		$\begin{cases} 2V_{7}^{2} = 3V_{7}^{2} \\ 1V_{1}^{2} = 1V_{1}^{2} \end{cases}$	} = 3 + 1 = 4		1	 				4						o sense pour pe	- 10	coll or	100	
19	+3V6+3V7	1V9	$\begin{cases} {}^{3}V_{6} = {}^{3}V_{6} \\ {}^{3}V_{7} = {}^{3}V_{7} \end{cases}$	$=\frac{2n-2}{4}$			 			2n - 2	4		$\frac{2n-2}{4}$		$\left\{\frac{2n}{2} \cdot \frac{2n-1}{3}, \frac{2n-2}{3}\right\}$	}			A1100		
20	× 1V, ×4V,	sv ₁₁		$\left. \right\} = \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2}{3}$	4 = A ₃		 						0		L = As	,	Capesa hip is	4175	CENTE	2000	1191
21	× 1V22×5V1	°V ₁₂	{ V 22 = V 22 0 12 = 2 V 12 0 12 = 2 V 12	$\left.\right\} = B_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3}$	$\frac{2u-2}{3} = B_3 A_3$		 								0	B ₃ A ₃	A STATE OF THE STA		B _a	17.3	20
22	+ 2V12+2V1	sv ₁₃	$\left\{ \begin{smallmatrix} 2V_{12} = 6V_{12} \\ 2V_{13} = 8V_{13} \end{smallmatrix} \right.$	$= A_0 + B_1 A_1 + B$	β ₃ Λ ₃		 									0	$\left\{A_3 + B_1 A_1 + B_2 A_3\right\}$	7.5			
23	- 2V10-1V1	3V ₁₀	$\begin{cases} {}^{2}V_{10} = {}^{3}V_{10} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	11 - 0/ 1		1	 							n-3		The Land		200	2 2 2	200	
							н	ere follo	ms a re	netition	of Oper	ations t	hirteen !	o twent	tv-three.		Parameter Service				ALC: Y

... 0

Working Variables. Data Result Variables. 1V₃ °V₅ ○ 0 0 1V2 00 00 2 0 0 0 0 0 0 0 0 Number of Operati 00000 Nature of Operati 000 0 Indication of Variables Variables change in the receiving acted value on any Variable. Statement of Results. results. upon. B₁ 2 Вз Bs 2 2 n 2n - 1

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)

3	+	1V5 +1V1 2V5	11V. =1V.	= 2n+1				***	2n + 1							A CONTRACTOR OF THE PERSON OF	-		- 1-0	
		2V4+2V4 V11	$\begin{cases} 2V_5 = {}^{0}V_5 \\ 2V_4 = {}^{0}V_4 \end{cases}$	$=\frac{2n-1}{2n+1}$				0	0			 		$\frac{2n-1}{2n+1}$	77.00	or wine and win				
5	+	1V11+1V2 2V11	\[\begin{pmatrix} 1V_{11} = 2V_{11} \\ 1V_{1} = 1V_{1} \end{pmatrix} \]	$=\frac{1}{2} \cdot \frac{2n-1}{2n+1}$		2						 		$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$		a page trail or to a local of				
6	-	OV 23 - 2V 11 1V 13	$\left\{ {}^{2}V_{11} = {}^{0}V_{11} \\ {}^{0}V_{13} = {}^{1}V_{13} \right\}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0 \dots$								 		0		$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$	-			
7	-	IV ₃ = IV ₁ IV ₁₀	$\left\{ \begin{smallmatrix} 1V_3 & = 1V_3 \\ 1V_1 & = 1V_1 \end{smallmatrix} \right\}$	= n - 1 (= 3)	1		n						n-1		- Inus	and the Tarketer		3		
8	+	V2 +6V2 V7	$\begin{cases} 1V_2 = 1V_2 \\ 0V_2 = 1V_2 \end{cases}$	= 2 + 0 = 2		2					2							-15	ran	ĺ
9	+	1V6 +1V7 3V11	$\left\{ v_{11}^{e} = v_{6}^{e} \right\}$	$=\frac{2n}{2}=\Lambda_1$						2 n	2	 		$\frac{2n}{2} = \Lambda_1$			1000			
10	×	1V21×3V11 1V12	3V,1=3V,1	$= B_1 \cdot \frac{2\pi}{2} = B_1 A_1 \cdot$								 		$\frac{2n}{2} = \Lambda_1$	$B_1 \cdot \frac{2\pi}{2} = B_1 A_1$		В,			I
11	+	1V12+1V13 2V13	$\begin{bmatrix} {}^{1}V_{12} = {}^{6}V_{12} \\ {}^{1}V_{13} = {}^{2}V_{13} \end{bmatrix}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \dots$								 			0	$\left\{-\frac{1}{n}, \frac{2n-1}{2n-1} + B_1, \frac{2n}{2n}\right\}$				ı

3	*	149-114	, u	0V11=3V11	= \(\frac{1}{2} = \alpha_1 \dots		 	***	***	211	2		 ***	$\frac{\pi}{2} = \Lambda_1$		District Specific St.	100	175		47.19
10	×	1V21×3V1	ı _{V12}	${V_{21}={}^{1}V_{21}^{3}V_{11}={}^{3}V_{11}^{3}}$	$= B_1 \cdot \frac{2n}{2} = B_1 A_1 \cdot \dots$		 						 	$\frac{2n}{2} = \Lambda_1$	$B_1 \cdot \frac{2\pi}{9} = B_1 A_1$		В,			
11	+	1V.+1V.	2V.,	1V12=0V12	$\begin{vmatrix} 1 \\ 1 \end{vmatrix} = -\frac{1}{3} \cdot \frac{2n-1}{3} + B_1 \cdot \frac{2n}{3} \dots$		 						 		0	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$				06/200
12	-	1V10-1V1	² V ₁₀	$\left\{ \begin{smallmatrix} 1 V_{10} = {}^{2}V_{10} \\ 1 V_{1} = {}^{1}V_{1} \end{smallmatrix} \right\}$	= n - 2 (= 2)	1	 						 n - 2			2 28+1 2)				
13 [r-	1V6 -1V1	²V	$\begin{cases} {}^{1}V_{6} = {}^{2}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	= 2 n - 1	1	 			2 n - 1						1 1 1 1 1 1 1				
14	+	1V, +1V,	2V,	$\begin{cases} 1V_1 = 1V_1 \\ 1V_1 = 2V_1 \end{cases}$	≥ 2 + 1 = 3	1	 				3									
15	1.	2V. +2V.	ıv	$\begin{cases} 2V_6 = 2V_6 \end{cases}$	$ = \frac{2n-1}{n}$		 			2n-1	3	$\frac{2n-1}{3}$				The state of	-	1276		
16	Lx	1V8 ×3V1	W,	$\begin{cases} {}^{1}V_{8} = {}^{0}V_{8} \\ {}^{3}V_{-} = {}^{4}V_{-} \end{cases}$	$\left. \right\} = \frac{2n}{9} \cdot \frac{2n-1}{3}$		 					0	 	$\frac{2n}{2} \cdot \frac{2n-1}{3}$						
17	1-	2V6 -1V1	3Ve	1V1 = 1V1	= 2n - 2	. 1	 			2 n - 2		1			1800			Mary	100	
18.	+	1V1 +2V,	3V,	$\begin{cases} {}^{2}V_{7} = {}^{3}V_{7} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	3 + 1 = 4	. 1	 				4	-			- Minde	o marining	- 10	roll or	100	

14	+ 1V1 + 1V7 2V7	$\begin{cases} {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{7} = {}^{2}V_{7} \end{cases}$	} = 2 + 1 = 3	1			 		3	1	-							
15	+2V6+2V7 1V8	$\begin{cases} 2V_6 = 2V_6 \\ 2V_7 = 2V_7 \end{cases}$	$\left. \right\} = \frac{2n-1}{3}$				 	2n - 1	3	2n-1				in the same	12-22	12)	-10	
16	× 1V8 × 3V11 4V11	$\begin{cases} {}^{1}V_{8} = {}^{0}V_{8} \\ {}^{3}V_{11} = {}^{4}V_{11} \end{cases}$	$\left. \cdot \right\} = \frac{2n}{2} \cdot \frac{2n-1}{3}$				 			0		 $\frac{2n}{2} \cdot \frac{2n-1}{3}$						
17	- 2V6 - 1V1 3V6	$\begin{cases} {}^{2}V_{6} = {}^{3}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases}$	} = 2 n - 2	1			 	2n - 2					100			Many	7.13	
18.	+ 1V1 +2V, 3V,						 		4	-				o semination of	-	roll or	-	a layer
19	+ 3V6+3V7 1V9	$\begin{cases} 3V_6 = 3V_6 \\ 3V_7 = 3V_7 \end{cases}$	$\left. \right\} = \frac{2n-2}{4}$			٠	 	2n - 2	4		$\frac{2n-2}{4}$	 $\left\{\frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3}\right\}$		Service Sancer		A 100 C	1	
20	× 1V, ×4V, 5V,		$\left. \left. \right\} \right = \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = \Lambda_3$		1		 				0	l = As J		CHOUSE A DIED O	al yill	reside	1000	1000
21	× 1V22×5V11 0V12	\[\begin{cases}	$\begin{vmatrix} 1 \\ 2 \end{vmatrix} = B_3 \cdot \frac{2n}{9} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 A_2$				 			300		 0	B ₂ A ₂			В.	7	20

16	C×1V8 ×3V11	V11 \ 3V11=4V11] = 2 · 3 · · · · · · · · · · · · · · · · ·			 	 	***	0			2.3				100		Die J
17	- 2V6 -1V1 3		} = 2 n - 2	1		 	 2 n – 2		1							N. Carrie		2 14
18.	+ 11/1 +21/2	${}^{3}V_{7}$		1		 	 	4						or sensor power par	- 100	of a		a lafat
19	+3V6+3V7	$v_9 = \left\{ \begin{array}{l} 3V_6 = 3V_6 \\ 3V_7 = 3V_7 \end{array} \right.$	$\left. \right\} = \frac{2n-2}{4}$			 	 2n - 2	4		$\frac{2n-2}{4}$		$\left \left\{ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \right\} \right $		Service Side of the		4000		
20	× 1V, ×4V,11	${}^{5}V_{11} \dots \left\{ {}^{1}V_{9} = {}^{6}V_{9} \atop {}^{4}V_{11} = {}^{5}V_{11} \right\}$	$ \left. \left. \right\} \right = \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{4} = \Lambda_3 $			 	 			0		l = As J		Capus A Day o	- lyff	report	- permi	100
21	× 1V22×5V11	${}^{6}V_{12} \dots \left\{ \begin{smallmatrix} 1V_{22} = 1V_{22} \\ 0V_{12} = 2V_{12} \end{smallmatrix} \right.$				 	 					0	B ₃ A ₃	A STATE OF THE STA		B,		100
22	+ 2V12+2V13	$s_{V_{13}}$	$= A_0 + B_1 A_1 + B_3 A_3 \dots$		'	 	 						0	$\left\{A_3+B_1A_1+B_3A_3^{'}\right\}$	7.0			
23	- 2V16-1V1	${}^{3}V_{10} \cdots \left \left\{ \begin{smallmatrix} 2V_{10} = & 3V_{10} \\ & 1V_1 = & 1V_1 \end{smallmatrix} \right. \right.$	} = n − 3 (= 1)	1		 	 				n-3			The state of		2 2		

 $\begin{vmatrix} {}^{4}V_{13} = {}^{9}V_{13} \\ {}^{9}V_{23} = {}^{1}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{4}V_{6} = {}^{9}V_{6} \\ {}^{8}V_{7} = {}^{9}V_{7} \end{vmatrix} = u - \frac{u}{by a}$

24

+ 1V1 + 1V2 1V2

ŀ	3V6 = 3V6	$=\frac{2n-2}{4}$						2n - 2	4		$\frac{2n-2}{1}$		$\left\{ \frac{2n}{2}, \frac{2n-1}{3}, \frac{2n-2}{3} \right\}$				200		
١.	1V, =0V,)	2n 2n-1 2n-2	2000	1.	4						4		= As			150	costr	200	
ı	14V ₁₁ =5V ₁₁	$=\frac{2}{2}\cdot\frac{3}{3}\cdot\frac{3}{4}=\Lambda_3$									0								
l	0V10=2V10	$= B_3 \cdot \frac{2n}{2} \cdot \frac{3}{2n-1} \cdot \frac{4}{3} = B_3 \Lambda_3$								***			0	B ₁ A ₂			B _a	V.	
1	{ 2V12=6V12 }	= A ₀ + B ₁ A ₁ + B ₂ A ₃						1						0	()	1000	-	-	
1	2V13=3V13				-		***								1 43 + pl vi + pava	100			
1	{ 1V1 = 1V1	$Y_{\nu_{n}-Y_{\nu_{n}}}^{\nu_{n}} = n-3 \ (=1) \ \dots \ $																	
					н	ere follo	ows a re	epetition	of Oper	ations t	hirteen 1	to twent	v-three.						

...

Program Snippet (GitHub Gist)

```
/* 01 */ v4 = v5 = v6 = v2 * v3;  // 2n
/* 02 */ v4 = v4 - v1; // 2n - 1
/* 03 */ v5 = v5 + v1: // 2n + 1
// In Lovelace's diagram, the below appears as v5 / v4, which is incorrect.
/* 04 */ v11 = v4 / v5:
// On the first loop this calculates B3A3 and adds it on to v13.
// On the second loop this calculates B5A5 and adds it on.
while (v10 > 0)
   while (v6 > 2 * v3 - (2 * (v3 - v10) - 2))
     if (v10 == 2) {
   /* 21 */ v12 = v22 * v11:
   } else {
   /* 21 */ v12 = v23 * v11;
```

Resources

- What Did Ada Lovelace's Program Actually Do? TwoBitHistory.org
- Sketch of the Analytical Engine
- Translation of Note D to C. (gist)
- Wikipedia

Breakout Discussions

- Introduce yourself to your group; what are you working on this summer?
- What is the most difficult bug you've encountered?
- What is the best thing you've attended so far this summer? And/or what are you most looking forward to?

Prizes!

A prize will be awarded to anyone who shares their bug story at the end of the hour

Tools

Created with Emacs, Org Mode, and LATEX/Beamer. View the source.