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ABSTRACT

Automatic parallelization of models has been the “Holy Grail”
of the PDES community for the last 20 years. In this pa-
per we present LORAIN — Low QOverhead Runtime Assisted
Instruction Negation — a tool capable of automatic emission
of a reverse event handler by the compiler. Upon detection
of certain instructions, LORAIN is able to account for, and
in many cases reverse, the computation without resorting to
state-saving techniques. For our PDES framework, we use
Rensselaer’s Optimistic Simulation System (ROSS) coupled
with the LLVM [18] compiler to generate the reverse event
handler.

One of the primary contributions of this work is that LO-
RAIN operates on the LLVM-generated Intermediate Rep-
resentation (IR) as opposed to the model, high-level source
code. Through information gleaned from the IR, LORAIN
is able to analyze, instrument, and invert various operations
and emit efficient reverse event handlers at the binary code
level.

This preliminary work demonstrates the potential of this
tool. We are able to reverse both the PHOLD model (a
synthetic benchmark) as well as Fujimoto’s airport model.
Our results demonstrate that LORAIN-generated models
are able to execute at a rate that is over 97% of hand-written,
parallel model code performance.
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1. INTRODUCTION

Since the early 1990’s, the “Holy Grail” for parallel discrete-
event simulation has been the automatic parallelization of
event- and process-driven models which yield performance
improvements on par with hand-written models. The belief
in this goal is rooted in the Time Warp protocol’s ability
to be “blind” with respect to a model’s event scheduling be-
havior both in terms of space (e.g., which logical processes
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(LPs) communicate) and time (i.e., model lookahead) [12,
17]. The promise of Time Warp has been its ability to auto-
matically uncover parallelism within a discrete-event model.
On the surface this appears to be a very easy problem to
solve compared with the more general problem of automat-
ically parallelization of a serial piece of software. That has
clearly turned out to not be the case.

At the 1994 PADS conference, Fujimoto correctly asserted
that the PDES “Holy Grail” would not be reached in that
century [22]. This view was driven from experience in the
automatic parallelization of the Simscript I1.5 models which
were built for and executed by a Time Warp kernel [29].
The principal challenge was LP state-saving, more specifi-
cally the issue of sharing state among LPs. This was ad-
dressed via Space-Time Memory, however, its functionality
came with potentially large overheads that diminished over-
all parallel performance. There were also related issues in
that Simscript allowed an event to examine the event list.

To address part of the Time Warp state-saving challenge,
Carothers, Perumalla, and Fujimoto [9] devised a new ap-
proach called reverse computation. As the name implies,
only the control state (e.g., which if-block was taken) is
stored during the forward processing of any event, as op-
posed to incrementally or fully saving an LP’s state changes.
To support the rollback operation, a reverse event handler
is created that uses the control state information to select
which control path to take during event rollback processing.
It then reverses or undoes each state change. Due to the fact
that many operations performed on state are constructive,
such as an increment or decrement on integer statistics, the
model’s execution time is dramatically reduced by using this
approach. Performance increases with reverse computation
have been attributed to significant improvements in cache
and TLB hit rates within the overall memory hierarchy [9].

Reverse computation has been applied to a number simu-
lation areas including Hodgkin-Huxley neuron models [20],
Internet models [32], HPC network models [19, 21], parti-
cle simulations [26], and gate-level circuit models [15]. Most
recently, Barnes et al. [5] executed the PHOLD benchmark
with reverse computation on nearly two million cores and
was able to achieve an event-rate exceeding half a trillion
events per second.

Besides improving overall Time Warp simulator perfor-
mance, reverse computation also opened the door to revisit
the question of automatic model parallelization. In 1999, Pe-
rumalla created the first reverse C compiler called RCC [25].
This was a source-to-source compiler that took a model built
to a specific PDES engine (in this case Georgia Tech Time



Warp) and produced both the instrumented forward event
handlers as well as the reverse event handler. RCC was
based on a direct statement by statement reversal of the
forward event handler’s C code statements. The key to this
approach is that the model developer had to insert pragma
statements to provide hints to RCC in order to produce cor-
rect forward and reverse event handlers. This work demon-
strated for the first time that an automatic parallelization
tool could produce event processing code that was as good
as the hand written code (i.e., having negligible performance
loss).

The most recent effort to automatically parallelize event-
driven models with reverse computation has been the Back-
stroke framework [16, 30]. Here, the ROSE source-to-source
compiler framework is used to develop a set of algorithms
that operate on an Abstract Syntax Tree (AST) to produce
both a modified forward event processing code as well as
the reverse event handler code. What is unique about Back-
stroke is that it takes on the challenge of working with mod-
els developed in C++ at the source-level.

In this paper, we introduce a new automatic paralleliza-
tion approach called LORAIN — Low Overhead Runtime As-
sisted Instruction Negation. LORAIN is a collection of com-
piler passes that leverage the LLVM [18] compiler frame-
work to create both a modified forward event handler, which
records the control state, as well as the corresponding re-
verse event handler for a specific Time Warp simulator’s
API. For this research, ROSS (Rensselaer’s Optimistic Sim-
ulation System) [5] is used.

The key contribution of this work is that it operates not
on the source code of the model but on LLVM’s Intermedi-
ate Representation (IR). This can be viewed as a very high
level abstract machine instruction set. LLVM IR instruc-
tions use Static Single Assignment (SSA) [10] which aids
in the analysis of the model code and forward /reverse code
generation process. LORAIN’s overall approach is twofold:
first, it analyzes the forward handler per the specifics of the
ROSS API,; second, it synthesizes the proper state-restoring
reverse handler. The analysis stage includes evaluating the
IR to find locations at which destructive assignments take
place. Transformations are also made that make certain
code patterns more amenable to reversal. In the synthe-
sis stage, LORAIN passes the instrumented forward IR into
secondary transformation pass which traverses the Control
Flow Graph (CFG) and finds and reverses “store” instruc-
tions. Once the model’s IR is complete, LLVM can directly
produce an executable, as opposed to modified source code.
Thus, the developer need not be concerned with additional
compilation steps of model source code nor do they need to
insert pragmas.

The principal advantage of operating at the LLVM IR
level is LORAIN gains independence from the syntax com-
plexities that occur at the source code level, such as multi-
expression if-statements that contain potentially destructive
assignment statements. The LLVM compiler design-view
endorses this separation between language syntax and rep-
resentation by enabling nearly all compiler passes to operate
exclusively at the IR level and not on the front-end’s AST
(which is contained in a separate tool called clang).

The remainder of this paper is organized as follows: Sec-
tion 2 describes the ROSS Time Warp engine and LLVM
compiler. Section 3 describes our LORAIN framework. The
specific details on how LORAIN performs the IR modifica-

tion and generation is presented in Section 4 for two models
along with parallel performance results. Finally, additional
related work and conclusions are presented in Sections 5 and
6 respectively.

2. BACKGROUND
2.1 ROSS

In this study, we will be using ROSS [8], an open-source,
discrete event simulation engine that supports both con-
servative and optimistic (Time Warp) simulation (http://
ross.cs.rpi.edu). ROSS is written in C and assembly lan-
guage atop MPI, with targeted support for supercomputing
platforms such as the IBM Blue Gene/Q. ROSS takes a dif-
ferent approach from other Time Warp simulation systems
which use bulk state-saving. Instead, ROSS utilizes reverse
computation to undo state changes programmatically. To
help achieve this programmatic reversal, ROSS employs a
reversible random number generator. Through reverse com-
putation, ROSS enables quick state restoration, often many
times faster than classical state-saving.

Within ROSS, MPI Tasks are represented as Processing
Elements (PEs). PEs contain multiple Logical Processes
(LPs) capable of independently executing events in time-
stamp order. Events are created by sending messages be-
tween LPs and inter-PE messages are permitted. During
optimistic simulation, out of order execution is permitted
until a temporal anomaly is detected. For example, an LP
receives an event in its past. At this point ROSS uses re-
verse computation to incrementally undo all operations that
potentially modified the LP’s state. Through multiple anti-
messages, the LP’s state is reversed until the system can
process the erroneous event in proper time-stamp order. At
this point, normal forward execution of events will resume.

A central assumption of all ROSS models is that LPs only
share state by exchanging time-stamped event messages.
This is a typical restriction of many PDES systems and al-
lows ROSS to scale to hundreds of thousands of processors
or more. Currently, Space-Time Memory (STM) [29] is not
supported in ROSS but could be in the future. Design and
implementation of STM on a million core supercomputer is
still an open PDES problem. Additionally, static or global
variables are not supported unless they are read-only once
the model initialization step is complete. This assumption
greatly simplifies LORAIN’s analysis and instrumentation
steps.

The functions within the ROSS API that need to be re-
versed are relatively straightforward. All of the RNG func-
tions in ROSS rely on the tw_rand_unif () macro, which it-
self calls the rng_gen_val() function. Other functions exist,
such as tw_rand_integer() and tw_rand_exponential(),
which must be caught and handled appropriately. All other
function calls are either re-emitted or ignored as they are
immaterial to the various LORAIN passes.

Finally, the function prototypes for the forward and re-
verse event handlers must be identical and are critically
important for this work; all parameters play a role: void
name(state *lp_state, bitfield *bf, message *msg, LP
x1p) ;, where 1p_state is the pointer to the LP state, bf is
a pointer to the control state bit field, msg is the pointer
to the current event’s message data and 1lp is the pointer
to the current LP. LORAIN’s use of the ROSS API will be
discussed further in Section 3.
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y1 =17 y2 =22
y=¢(y,.y2)

Figure 1: SSA ¢ construction. y is assigned the
appropriate value based on the path taken through
the control flow graph.

%1 = load i32% @test_add_x, align 4
%2 = add nsw 132 %1, 1
store 132 %2, i32% @test_add_x, align 4

Figure 2: A use-def chain example. The store in-
struction uses %2, which in turn uses %1. Using
this information, we can generate a topological or-
dering of an instruction’s dependencies.

2.2 LLVM

LLVM is a compiler framework developed at University
of Illinois at Urbana-Champaign by Lattner and Adve [18].
The virtual instruction set is very similar to RISC, where
most instructions are represented as three-address code. In-
structions for accessing memory are an exception. Memory
is only accessed via load and store instructions. LLVM
utilizes SSA [10] assigning a value to each identifier exactly
once. Strict typing is used to ensure consistency within vir-
tual instructions. LLVM has a modern C++ code base and
enjoys heavy interest from academia and industry alike.

The LLVM virtual instructions are collated into basic blocks.
Basic blocks are sequences of instructions that will execute
once they have been entered (i.e. there are no exits other
than completing the block). Each basic block concludes with
exactly one terminator instruction such as a jump or return
instruction.

A key feature of LLVM is its application of SSA virtual
registers. Here, new SSA virtual registers are assigned the
result of any operation that generates a value e.g., %22 =
add %zx, %y adds x and y and assigns that value to the tem-
porary %22. %22 may be used in future computations requir-
ing that value, for example common sub-expression elimina-
tion. Having the same value in multiple paths through the
CFG can be problematic. SSA solves this at merge points
with ¢ functions. See figure 1. For example, y is assigned
the output of a ¢ function on y; and y2. The ¢ function
“knows” which path was taken to get here and is therefore
able to choose the correct value.

Finally, LLVM is object oriented and many classes derive
from the Value class such as Argument, BasicBlock, and
Instruction to name a few. To be precise, the Instruction
class is a subclass of the User class, which itself is a subclass
of the Value class. The User class keeps track of Values it
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Figure 3: The various LLVM passes that are run by
LORAIN. LLVM-authored passes are shown in gray,
our passes are shown in white.

uses and is helpful in the construction of use-def chains [2].
LORAIN uses use-def chains to ensure that all instruction
dependencies are satisfied (see figure 2).

3. LORAIN

LORAIN makes the key assumption that only instruc-
tions that affect memory have the capacity to alter state.
Therefore, restoring the contents of memory to its previous
values is sufficient to effectively negate an erroneous event.
By inverting the CFG and reversing the stores along the ba-
sic block path taken through the function, the contents of
memory following a reverse function call should be restored
to its original values (assuming there is no bit loss in the in-
struction reversal step). Currently, LORAIN only reverses
the LLVM store instruction, although other instructions do
exist which may alter memory. In practice, these are rarely
seen.

Most operations are capable of being programmatically
inverted (i.e., they are constructive). However, for those
that are not we must resort to state-saving. Values which
are destructively assigned must store their data elsewhere
to ensure proper reversal. This is explained further in Sec-
tion 3.1

LORAIN’s reversal process begins with a standard C lan-
guage file which adheres to the ROSS API and includes the
forward event handler as well as a declaration for its reverse
event handler. ROSS builds a table of function pointers
which is used by the simulation runtime to determine which
function to call. Therefore, ROSS requires all model-specific
function handlers to be declared ahead of time thereby ne-
cessitating the declaration of the reverse event handler. Note
that at this stage the function body of of the reverse event
handler has yet to be defined. This file is then compiled
down to its corresponding IR bitcode. The resulting bit-
code file can then be passed into the LLVM opt tool. opt
is used to run code transformation and analysis passes. The
following list of compiler passes are utilized by LORAIN’s
overall work-flow. Figure 3 shows how these pass are orga-
nized and ordered. The passes developed in this paper are
highlighted in bold italics.

e break-constgeps: de-optimizes the instruction sequence
for analysis purposes (e.g., struct member references).



This pass is from the latest version of the open-source
SAFECode compiler [1, 11].

e lowerswitch: convert switch instructions into a se-
quence of if conditions. This allows the developer
to mot have to implement switch instructions.

e mergereturn: create a single return point and have all
other earlier termination instructions jump to it.

e reg2mem: de-optimize the SSA code into non-SSA
form. This allows for easier modification of the IR.

e aug-struct: append members to the message struct
which enables state-saving for destructively-assigned
LP state members (see Section 3.1).

e loop-simplify: apply transformations to natural loops
to more easily allow future analysis and transforma-
tions.!

e indvars: simplify loop induction variables.!

e LORAIN: This step is implemented as several passes
for automatic reversal of parallel discrete-event simula-
tion models. These passes are described in the Sections
3.2 and 3.3.

3.1 Analysis & Message Augmentation

A first pass is executed by LORAIN to find all state values
which are destructively overwritten. Upon detection of such
a value, the value’s type must be retained as well as other
identifying aspects of that value. The pass iterates over all
store instructions, marks them with metadata, and saves
them in a set. At this point, the message struct provided
by the ROSS model is augmented with types matching the
overwritten values. This provides a location to store values
that may be overwritten by the current event. This approach
has been used extensively by hand written models, such as
the Yaun et al. TCP model [32].

Given a forward event handler, we need to evaluate all
store instructions to the LP state. First, we find all “de-
structive” stores. Destructive stores are stores in which the
original value cannot be recovered given the final value and
sequence of steps taken. For example, i = i * 3; is re-
versible: simply divide the new value of i by 3. i = 27; is
non-reversible: given 27, there is no way of knowing the
previous value for i. If any destructive stores exist, we
must make space to save these values prior to overwriting
them. We do this by augmenting the message struct. This
requires modifying the forward and reverse event handler
function prototypes. These destructive store instructions
are marked with LLVM metadata indicating they have al-
ready been taken care of and will not be reversed.

3.2 Instrumentation

Instrumentation is a pass done primarily to facilitate proper
reversal. For readability and debugging purposes, all basic
blocks are renamed. Basic blocks with two or more prede-
cessors are found and the edge from the predecessor to the
current basic block is split and an empty basic block is in-
serted (see figure 4). An instruction to turn on a particular
bit in the bit field is inserted in these blocks. The purpose

! This pass is not exemplified by the examples in this paper,
though is typically required.

if stmt
if stmt / \
/ \ branch 1 branch 2
branch 1 branch 2 l l
\ / toggle bit 0 toggle bit 1
end if end if

Figure 4: The CFG of the original function F (left
subfigure) and the modified CFG (right subfigure).
The branch 1 and branch 2 blocks are split and in-
structions to toggle the appropriate bit fields are
inserted into the newly created basic blocks.

of this construction is to ensure bits are toggled so it is pos-
sible to retrace the path through the function’s CFG. This
leverages the existing bit field bf of the ROSS model event
handler that developers use in their hand-written models.

The next part of the instrumentation pass deals with the
store instructions. For each store instruction LORAIN an-
alyzes it uses and determine if it affects the memory of the
LP state. If the store instruction has no bearing on the
LP state, it is marked with metadata to be ignored in fu-
ture LORAIN passes. If the store instruction affects the LP
state but is destructive, we save the value for future rollback.
The value is saved in the augmented message struct which is
created during the aug_struct pass as previously noted in
Section 3.1. These instructions are also marked with meta-
data since the reversal is handled in the opposite order with
a restorative assignment operation from the message struct
back to the LP state.

3.3 Inversion

We begin our reverse event handler function with its pro-
totype. Since the forward and reverse event handlers have
identical types, we simply request a function type match-
ing the forward event handler. We must do this for ROSS
compliance.

For each basic block in our forward event handler we cre-
ate an empty analog block in our reverse event handler. The
entry block always has certain special properties, namely
stack allocations for local variables and stack-allocated tem-
porary variables for arguments. A bidirectional, one-to-one
mapping is established between the individual forward and
reverse basic blocks.

Next, LORAIN analyzes each forward basic block sepa-
rately. Instructions which are important enough to be re-
versed are placed on a stack. LORAIN then goes through
the stack to build the corresponding reverse basic block. For
each forward instruction, LORAIN takes advantage of the
LLVM’s InstVisitor class which provides a Visitor pattern
[14] implementation for all available instruction types. We
have the potential to visit any of the following instructions:



e visitSExtInst: sign extend the given value. LLVM
requires all operands in a comparison are the same
length.

e visitBitCast: cast between compatible types.

e visitGetElementPtrInst: all array and struct ac-

cesses must use this instruction to perform proper pointer

arithmetic.

e visitTerminatorInst: all basic blocks finish with a
terminator instruction (e.g., a return instruction).

e visitAllocalnst: a stack space allocation instruc-
tion.

e visitStorelnst: astore instruction (can access mem-
ory).

e visitLoadInst: a load instruction (can access mem-
ory).

e visitCallInst: for the sake of this work, this should
be viewed as a standard function call.

e visitBinaryOperator: standard three-address code
binary operator. For example, arithmetic operations,
shifting operations, etc.

The Terminator instruction requires special consideration.
In LLVM, all basic blocks end with a single terminator in-

struction with no exceptions. Typical terminators are branches

to other basic blocks, function calls, or return instructions.
A critical observation is that, based on the terminator in-
structions alone, we are able to reconstruct the control flow
graph or in this case, its inverse.

For example, if a given basic block B from the forward
event handler F' has no predecessors, we can conclude that
this block is in fact the entry block. In the reverse event han-
dler F’, we must make its counterpart, B’, the exit block.
Similarly, if B has one predecessor P, then clearly there is an
unconditional jump from P to B. This requires the reverse
edge from B’ to P’. Two or more predecessors means there
are multiple paths through the CFG to B. Reversing this
will require an instruction that supports two or more possi-
ble exits, namely a switch statement terminating block B’.
Determining which route to take involves evaluating the bit
field corresponding to this particular branch point, see figure
5.

Another key instruction is store. If it is unmarked with
metadata it is reversed. Upon detecting a store instruction
in B, we first check to see if it exists in our forward-to-reverse
value mapping, i.e. if we have previously seen it from an-
other path. If so, this store has already been successfully
reversed and inserted into F’. This could have happen dur-
ing dependency lookups. If we have not encountered this
value before, all of the instruction’s dependencies must be
found and also reversed. All reversals are again carried out
by the InstVisitor class. Here, for each use of the value being
stored, we must recursively visit each member of the instruc-
tion’s use-def chain. When all dependencies are satisfied, we
can construct the final store and insert it into F’. Any store
instruction we have visited is saved in the forward-to-reverse
value mapping.

Some function call instructions must also be reversed.
For example, RNG calls must be “uncalled” to preserve de-
terministic behavior. In particular, LORAIN supports the

if stmt

/ \ switch(bit 0, bit 1)
branch 1 branch 2 / \

l l <empty> <empty>

toggle bit 0

N

end if

toggle bit 1

rev(branch 1) | rev(branch 2) |

N

Figure 5: The forward event handler (left subfigure)
and reverse event handler (right subfigure), which
are inverses of one another. Based on which bit is
set, we can find our way back through the CFG.

RNG calls that are provided with the ROSS framework.
Some ROSS macros may also ultimately call RNG functions.
This is not a problem as the macros have already been ex-
panded by the time we examine the IR. LORAIN’s passes
catch all RNG calls and emit the corresponding reverse RNG
calls. These are supplied by the ROSS framework. All other
unrecognized function calls, e.g. printf (), are not reversed.

Finally, all function exits must be coalesced; this can be
accomplished by using LLVM’s mergereturn pass. This is
required due to the C language invariant that any function
must have exactly one entry point. If F' had multiple exits,
F’ would have multiple entry points: a nonsensical proposi-
tion for the C language. Having a single exit blocks also gives
us an ideal location to restore the values that were previously
state-saved in the augmented message struct. This corre-
sponds to destructive store instructions which were marked
with metadata.

4. MODELS & PERFORMANCE STUDY

To investigate LORAIN’s performance, two complete ROSS
models were selected. First, we present the PHOLD model
[12] and the entirety of its reversal. This demonstrates a
full LORAIN reversal and consists of several complex calls
to the RNG. Second, we present Fujimoto’s airport model
[13]. This is a larger model which demonstrates additional
features of LORAIN such as recovering from both construc-
tive and destructive state changes.

4.1 PHOLD

PHOLD is simple benchmark for discrete-event simula-
tions [12]. Upon startup, the system is primed with n start-
ing events. These events are then processed in time-stamp
order on their respective starting LP. Only during event pro-
cessing can another event be dispatched.

The PHOLD pseudo-code is shown in figure 6. Observe
that there are potentially two or three RNG calls depending
on whether or not the if block is entered. Figure 7 is the
corresponding basic block representation of figure 6. Fig-
ures 8 through 15 are the actual IR from the basic blocks
contained within this function. As a whole, we denote the
IR of forward event handler with the name F'



initialization;
if tw rand unif() <= percent_remote then
| dest = tw_rand_integer(0, ttLLPs - 1);
else
| dest = local_PE;
end
if dest < 0 || dest >= (g-tw_nlp * tw_nnodes()) then
tw_error(TW_LOC, "bad dest”);
return;
end
tw_event *e = tw_event(dest,
tw_rand_exponential(mean));

tw_event_send(e);

Figure 6: PHOLD forward event handler.

entry
T | F

AN

rand_less_eq

N/

dest_less_zero

T|F

\

dest_greater_nlps

rand_greater

T | F
error send_event
return

CFG for 'phold_event_handler' function

Figure 7: The CFG of the PHOLD forward event
handler. The basic block titles have been renamed
for clarity.

The entry (figure 8) block begins by creating four stack
allocations to hold the program parameters and one addi-
tional allocation for the dest variable. All four parame-
ters are stored into their allocations. Next, a zero value is
written over the bit field parameter. The tw_rng_stream
is extracted from the LP parameter and rng_gen_val() is
called on it to determine whether PHOLD is generating a
remote event or not. If it does, then PHOLD jumps to
rand_less_eq, otherwise it jumps to rand_greater. Note,
that in LLVM IR, getelementptr is used for calculating
memory addresses when dealing with struct or array in-
dexing, bitcast is used to transform the integer bit field to
the appropriate type, and fcmp is a floating-point compari-
son instruction.

The rand_less_eq block (figure 9) again extracts tw_rng_
stream from the LP and calls rng_gen_val(). ttl_lps is

01 alloca %struct .PHOLD_statex, align 8

%2 = alloca %struct .tw_bfx, align 8
%3 = alloca %struct .PHOLD_messagex, align 8
%4 = alloca %struct .tw_lp*, align 8

%dest = alloca 164, align 8

store %struct . PHOLD_statex %s, %struct .
PHOLD_statex* %1, align 8

store %struct .tw_bfx %bf, %struct .tw_bfxx %2,
align 8

store %struct . PHOLD_messagex %m, %struct .
PHOLD _messagex* %3, align 8

store %struct .tw_lpx %lp, %struct .tw_lpxx %4,
align 8

%5 = load %struct.tw_bfxx %2, align 8

%6 = bitcast %struct.tw_bfx %5 to 132

store 132 0, i32x %6, align 4

%7 = load %struct .tw_lpx*x %4, align 8

%8 getelementptr inbounds %struct .tw_lpx %7,
i32 0, i32 7

%9 = load %struct .tw_rng_streamxx %8, align 8

%10 = call double @rng_gen_val(%struct .
tw_rng_streams %9)

%11 = load doublex @percent_remote, align 8

%12 = fcmp ole double %10, %11

br i1l %12, label %13, label %21

Figure 8: PHOLD entry block.

; <label >:13 ; preds = %0

%14 = load %struct .tw_lp*x*x %4, align 8

%15 = getelementptr inbounds %struct .tw_lpx %14,
i32 0, i32 7

%16 = load %struct .tw_rng streamx*x %15, align 8
%17 = load 132x Qttl_lps, align 4

%18 = sub 132 %17, 1

%19 = zext 132 %18 to i64

%20 = call i64 Qtw_rand_integer(%struct.

tw_rng_streams* %16, i64 0, i64 %19)
store 164 %20, i64* %dest , align 8
br label %25

Figure 9: PHOLD rand_less_eq block.

loaded and 1 is subtracted from it and is then passed into
tw_rand_integer (). The returned value is assigned to the
dest variable.

; <label >:21 ; preds = %0

%22 = load %struct.tw_lp**x %4, align 8

%23 = getelementptr inbounds %struct .tw_lpx %22,
i32 0, i32 1

%24 = load i64* %23, align 8

store 164 %24, i64* %dest, align 8

br label %25

Figure 10: PHOLD rand_greater block.

; <label >:25 ; preds = %21, %13
%26 = load 164 %dest, align 8

%27 = icmp ult 164 %26, 0

br i1 %27, label %35, label %28

Figure 11: PHOLD is dest_less_zero block.




; <label >:28 ; preds = %25

%29 = load i64% %dest, align 8
%30 = load i64* @Qg tw_nlp, align 8
%31 = call i32 @tw_nnodes()

%32 = zext 132 %31 to 164

%33 = mul 164 %30, %32

%34 = icmp uge 164 %29, %33

br i1 %34, label %35, label %36

Figure 12: PHOLD dest_greater_nlps block.

; <label >:35 ; preds = %28, %25
call void (i8x, 132, i8x, .)x @tw_error (i8x
getelementptr inbounds ([58 x i8]* @.strl,
i32 0, i32 0), i32 90, i8x getelementptr
inbounds ([9 x i8]* @.str2, i32 0, i32 0))
br label %47

Figure 13: PHOLD error block.

; <label >:36 ; preds = %28

%37 = load i64* %dest, align 8

%38 = load %struct.tw_lp*x %4, align 8

%39 = getelementptr inbounds %struct .tw_lpx %38,
i32 0, i32 7

%40 = load %struct.tw_rng_streamx** %39, align 8

%41 load double* @mean, align 8

%042 call double @tw_rand exponential(%struct .
tw_rng_stream= %40, double %41)

%43 = load doublex @lookahead , align 8

%44 = fadd double %42, %43

%45 = load %struct.tw_lp*xx %4, align 8

%46 = call %struct.tw_event* Qtw_event_new (i64

%37, double %44, %struct.tw_lpx %45)
call void Qtw_event_send(%struct.tw_event* %46)
br label %47

Figure 14: PHOLD send_event block.

; <label >:47 ; preds = %36, %35
ret void

Figure 15: PHOLD return block.

The rand_greater block, as shown in figure 10, loads
the LP identifier into dest. The dest_less_zero block
shown in figure 11 compares dest with zero. If it’s less,
PHOLD jumps to the error block. Otherwise, it jumps
to the dest_greater_nlps block. The dest_greater_nlps
block (figure 12) calls tw_nnodes() and multiply the result
with g_tw_nlp. If dest is greater than the product, jump
to the error block. Otherwise jump to the send_event
block. The error block (figure 13) is the error state. De-
spite the appearance, this state will terminate the program.
The send_event block (figure 14) creates a random number
using tw_rand_exponential() to which we add lookahead.
PHOLD then calls tw_event_new() with dest as the desti-
nation LP, a new future time-stamp, and the current LP as
the third argument. Finally, PHOLD calls tw_event_send ()
and jumps to the return block. Last, PHOLD’s return
block, shown in figure 15) exits from the event handler func-
tion.

entry*

bb* bbl

y A
bb.split bb1.split

bb2
T|F

\

o bb3
._crit_edge
—orecs T|F \
._crit_edgel | bb5*
A
._crit_edge.split | ._crit_edgel .split |

bb5.split

CFG for 'phold_event_handler' function

Figure 16: The CFG of the instrumented PHOLD
forward event handler function. RNGs calls are
marked with *.

With the forward event handler IR of F' in hand, LO-
RAIN must both instrument it (figure 16) and then invert
the resulting function in order to generate F’. Please note
that there are no stores to the simulation (LP) state in the
PHOLD model. There are therefore no stores that need to
be reversed to generate F’. There are, however, varying
numbers of RNG calls that must be un-called. By retracing
our steps in reverse through the CFG of F’, all RNGs will
be successfully rolled back as shown in figure 17.

4.2 Airport

While PHOLD is fairly simple and requires no state changes
to be reversed, Fujimoto’s airport model [13] does require
handling of state modifications while simultaneously main-
taining a degree of simplicity. As ROSS has an implemen-
tation of this, the airport model was deemed an ideal target
for demonstrating further reversing capabilities. Addition-
ally, this model contains examples of all three operations
which must be reversed: constructive operations, destruc-
tive operations, and random number generation.

Each airport in the airport model maintains three vari-
ables: In_The_Air, On_The_Ground, and Runway_Free. The
first two are integers: the number of planes in the airport’s
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Figure 17: The CFG of the reverse PHOLD event
handler. Reverse RNG calls are marked with *.

air-space and the number of planes on the ground at this par-
ticular airport. Runway_Free is a boolean indicating whether
or not the runway is available. In this model, each LP rep-
resents an airport and an event represents the action of an
airplane (arrive, land, depart). As different events are sched-
uled, the airplane “moves” between airports.

As aircraft flow from airport to airport, these variables are
adjusted appropriately. When a plane z moves from airport
A to airport B, the In_The_Air variable at A is decremented
by one while B’s is incremented by one. If z is destined
for airport B, Runway_Free must be checked to determine
whether or not the runway is available for a landing. If so, a
landing event must be scheduled. In_The_Air will again be
decremented and On_The_Ground will be incremented. After
some amount of time, this aircraft may again be scheduled
to depart this airport.

Figure 18 demonstrates a basic block from the forward
event handler while figure 19 demonstrates its correspond-
ing basic block from the reverse event handler. These basic
blocks represent the forward and reverse cases of the depar-
ture event. The blue region in the forward decrements (in
the reverse it increments) the state variable On_The_Ground.
The green and red regions handle random number genera-
tion in both forward and reverse directions.
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bb4 : ; preds = YLeafBlockl

%91 = load Ystruct.airport_state** %0, align 8

%92 = getelementptr inbounds Ystruct.
airport_state* %91, i32 0, i32 2

%93 = load i32* %92, align 4

%94 = add nsw i32 %93, -1

store i32 %94, i32* %92, align 4

%95 = load Y%struct.tw_lp** %3, align 8

%96 = getelementptr inbounds Ystruct.tw_lp* %95,
i32 0, i32 7

%97 = load Ystruct.tw_rng_stream** %96, align 8

%98 = load double* @mean_flight_time, align 8

%99 = call double @tw_rand_exponential (%struct.

tw_rng_stream* %97, double %98)
store double %99, doublex %ts, align 8,
%100 = load %struct.tw_lp**x %3, align 8
%101 = getelementptr inbounds Y%struct.tw_lp*

%100, i32 0, i32 7
%102 = load %struct.tw_rng_stream*x* 7101,
%103 = call i64 @tw_rand_integer (%struct.

tw_rng_streamx %102, i64 0, i64 3)
%104 = trunc i64 %103 to i32
store i32 %104, i32* Yrand_result,

'10
store i64 0, i64x Jdst_lp, align 8, !jml
%1056 = load i32* Yrand_result, align 4
store i32 %105, i32* J.reg2mem, !jml !10
br label %NodeBlock20

1jml 110

align 8

align 4, !jml

110

Figure 18: Demonstration of constructive opera-
tions. For example, the blue region consists of sub-
tracting 1 from the On The Ground state variable.
The green and red regions perform RNG calls.

bb4_rev: ; preds = %NodeBlock20_rev

%31 load %struct.tw_lp** %0

%32 = getelementptr Y%struct.tw_lpx* %31,
i32 7

%33 = load Ystruct.tw_rng_stream** Y32

%34 = call double @rng_gen_reverse_val (%struct.
tw_rng_stream* %33)

i32 o0,

%35 = load double* @mean_flight_time

%36 load %struct.tw_lp** %0

%37 = getelementptr Ystruct.tw_lpx* %36, i32 0,
i32 7

%38 = load Ystruct.tw_rng_streamx** %37

%39 = call double Q@rng_gen_reverse_val (%struct.
tw_rng_stream* %38)

%40 = load Ystruct.airport_statex** %3

%41 = getelementptr Ystruct.airport_statex* %40,
i32 0, i32 2

%42 = load i32x% %41

%43 = sub i32 %42, -1

store i32 %43, i32x %41

br label YLeafBlockl_rev

Figure 19: Demonstration of “reverse” constructive
operations. The blue region consists of adding 1 to
the On_The Ground state variable. The green and
red regions are reverse RNG calls.

Likewise, as destructive operations are performed on the
various values in the forward event handler, they must be
collated and their values saved for possible future restora-
tion. These values are determined at an earlier stage by an
analysis pass and passed to the current stage via metadata.
The forward event handler is configured to save these val-




ues at the beginning of the function (before their values are
overwritten). The emitted reverse event handler will restore
the values in its (single) exit block.

The time deltas for each event will be generated by ROSS’
reversible RNG. For example, when a landing event is sched-
uled, it must be at some (bounded) random time in the
future from the current event time. RNG calls must be un-
called so as to not disturb the random sequence. In other
words, if RNG R produces 71 and is un-called, the very next
call on R must produce an identical value to r1.

4.3 Experimental Setup

For our experimental study, we consider the following
three code versions for both PHOLD and airport models:

e 00: unoptimized. Both models were passed through
LORAIN and the modified forward and synthesized
reverse event handlers were compiled without applying
any further optimization (-00)

o 03: optimized. Both models were passed through LO-
RAIN but the modified and forward and synthesized
reverse event handlers were further optimized (-03)

o HW: hand-written. Both models had modified forward
and reverse event handlers written by hand and used
optimization level -03. We emphasize here that the
LORAIN passes are not used.

The ROSS framework itself is always compiled with -03
turned on regardless of which approach we were using. The
results were gathered using a 2.1 GHz 64 core AMD machine
with 512 GB of RAM running GNU/Linux and clang 3.2.
Only 32 cores were ever used in experimentation.

The PHOLD model is configured with 16 LPs and 1 event
per LP when run on 2 cores (small workload case) and
1,048,576 LPs with 16 events per LP when run on 32 cores
(large workload case). The airport model is configured 1024
airport LPs with 1 plane event per airport LP using 2 cores
(small workload case) and 1,048,576 airport LPs with 16
plane events per airport LP using 32 cores (large workload
case). All box-plot graphs were generated by running each
simulation 100 times.

A first pass ROSS model verification relies on a simula-
tion’s net event count. This count indicates the number of
committed events that occurred for a specific experiment.
It is necessary (but not sufficient) that the net event count
is identical for all parallel (any number of processors) and
serial runs of the same model configuration. This approach
was used as a sanity check when model development was
done by hand.

Table 1: Median performance of PHOLD and air-
port models measured in net events per second.

Experiment 00 03 HW

2 core PHOLD 946,164.80 971,834.45 974,658.30
32 core PHOLD | 6,070,813.30 | 6,155,326.35 | 6,178,446.40
2 core Airport | 1,921,355.20 | 2,039,775.40 | 2,062,018.85
32 core Airport | 6,713,835.70 | 6,854,997.75 | 7,044,712.05

4.4 Performance Results

The performance graphs for the PHOLD and airport mod-
els configured with 2 processors and small workload are
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Figure 20: The performance of the PHOLD model
using 2 cores. The three plots are 00, the unop-
timized generated IR, O3, the optimized generated
IR, and HW, the model including a hand-written
reverse event handler.
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Figure 21: The performance of the airport model
using 2 cores. The three plots are OO0, the unop-
timized generated IR, O3, the optimized generated
IR, and HW, the model including a hand-written
reverse event handler.

shown in figures 20 and 21. The 32 core, large workload
performance graphs are shown in figure 22 for PHOLD and
figure 23 for the airport model. For both models, the unop-
timized version generated by LORAIN is always worse than
the other two executions. However, the gap narrows between
optimized LORAIN model code and the hand-written ap-
proach. Using the median from the hand-written approach
as the baseline, the LORAIN-generated airport model was
only 1% less efficient while running with 2 cores and 2.7%
less efficient when running with 32 cores. The PHOLD
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Figure 22: The performance of the PHOLD model

using 32 cores. The three plots are OO0, the unop-
timized generated IR, O3, the optimized generated
IR, and HW, the model including a hand-written
reverse event handler.
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Figure 23: The performance of the airport model
using 32 cores. The three plots are OO0, the unop-
timized generated IR, O3, the optimized generated
IR, and HW, the model including a hand-written
reverse event handler.

model was 0.3% less efficient than the corresponding hand-
written model when run with 2 cores and only 0.4% less
efficient when run on 32 cores.

As expected, hand-written instrumentation and reverse
event handlers always outperform their synthesized counter-
parts. Despite the hand-written approach always having the
best performance, the optimized LORAIN approach is able
to come very close to the hand-written performance in all
cases. Although the hand-written model appears to be more
efficient in figure 23, table 1 indicates a median performance
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difference of 189,714.30 events-per-second (for models that
are executing at a rate of 6 to 7 million events-per-second)
between hand-written and optimized LORAIN code.

Notably, the range of the performance results was larger
than one might expect. This is attributed to OS jitter [6].
The Linux machine on which we performed these measure-
ments had quite a few extraneous processes, network traffic,
and other external factors that would contribute to a vari-
ance in the runtimes. Additionally, no attempt at locking
the MPI processes to specific PEs, which may have tightened
the results slightly, was made.

5. RELATED WORK

Beyond Parallel Simscript IL.5 [29], RCC [25] and Back-
stroke [30], there are number of previous related works within
the PDES community that have a similar goal. For exam-
ple, Nicol and Heidelberger [22] create the Utilitarian Par-
allel Simulator (UPS) which creates a set of modeling lan-
guage extensions that enable model components developed
for serial execution to execute in parallel using a conserva-
tive event scheduling approach. A similar idea is that of
the High-Level Architecture (HLA) [13] except that the end
goal is one of simulator interoperability and not improved
parallel performance. The idea here is that a heterogeneous,
federation of serial simulators is combined and made to in-
teroperate with much less effort than a fully, integrated re-
write of all models executing within the federation. In the
context of network simulation, Riley et al. [27] create a spe-
cialized approach called Backplane that enables the federa-
tions of different network simulators. They demonstrate the
capability of Backplane using a parallel version of ns (pdns),
GTNetS and GloMoSim.

Outside of the PDES community, there has been growing
interest automatic reverse execution of programs, especially
in the context of program debugging. Akgul et al. [3] provide
an assembly language level reverse execution approach for
the purposes of application debugging. Biswas and Mall [7]
provide an reverse execution approach for purposes of de-
bugging. The earliest work (e.g., 1988) in reverse execution
for debugging appears to have been done by Pan and Lin-
ton [23]. This early work is especially interesting because
there target was not serial programs but parallel programs
that are much harder to debug. Like other approaches, it
involved some varying degree of program state-saving to sup-
port the reverse program execution.

LORAIN’s overall approach is similar to Weiser’s slicing
methodology [31]. Slicing is a method of reducing the pro-
gram down to specific slicing criterion, or points of interest
(in this case, LLVM Values), as well as the remainder of
the program that may possibly affect it. This subset of the
program is referred to as a slice. Slicing is useful in many
areas [28]; applications include debugging purposes, paral-
lelization, and more directly related to this work, reverse
engineering.

Bahi and Eisenbeis [4] present a lower bound on the spa-
tial complexity of a DAG with reversible operations and an
approach for finding the minimum number of registers re-
quired for a forward and backward execution of a DAG.
They also define an energy-based garbage collection met-
ric as the additional number of registers needed for the re-
versible execution of the original computation. Experimen-
tal results report that garbage size is never more than 50%
of the DAG size.



Finally, Perumalla [24] provides an excellent survey of the
field of reverse/reversible computing.

6. CONCLUSIONS & FUTURE WORK

In this work we have presented LORAIN, a tool capable of
automatic analysis and instrumentation of a specific forward
event handler and the emission of a reverse event handler
capable of inverting all model state changes. Early results
show the automatically generated code is on par with hand-
written reverse event handlers. LORAIN currently only sup-
ports models adhering to the ROSS simulator API.

LORAIN can deliver over 99% the performance of hand-
written models and our results have shown no less than 97%
of the performance on a more complex model. While at
an early stage, having such a tool will undoubtedly ease the
burden on model developers and allow them to more quickly
develop optimistic models that better exploit current and
future HPC systems.

Currently, LORAIN does not support inter-procedural anal-
ysis or transformations, though such support may be added
in the future. Preliminary loop support exists although loop
handling improvements are certainly a high-priority addi-
tion. All primary simulation languages such as C, C++,
and Fortran are supported in LLVM, paving the way for
future support in LORAIN.

Additionally, we are interested in leveraging other LLVM
advances that may help to improve the overall quality of
LORAIN’s modified forward and synthesized reverse event
handler functions. For example, Zhao et al. [33] develop a
proof technique for proving SSA-based program invariants
and compiler optimizations. Here, they apply this technique
and formally verify a variant of LLVM’s mem2reg transfor-
mation and show the verified code generation performs on
par with LLVM’s unverified implementation.

The overall issue of verification is very much an open ques-
tion in the context of reverse computation especially at the
IR level. It is clear from the Backstroke compiler that source-
to-source tools can maintain program semantics that may
enable improved reverse code transformations. However, it
is unclear if verification of the generated code at the LLVM
IR level is equally good as source-to-source reverse code.
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