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Aug 2013 
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Apr 2015 
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Development Timeline

GA Tech Time Warp implementation by 
Shawn Pearce and Dave Bauer 

ROSS v5.0 released on Source Forge 

ROSS released on GitHub 

Simplified ROSS 

Travis CI Testing 

ROSS Blog
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Last April 

Summer of 
CODES 

Developing 

Future

Feature Additions

Optimistic Realtime Scheduler 

Lamport Path Statistic 
Commit Function 
RIO v2 

Visualization 

Large Message Support 
Preemptive Termination 
Event Retraction 
Ties
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ROSS Schedulers

• Sequential --sync=1 
• Conservative --sync=2 
• Optimistic --sync=3 
• Optimistic Debug --sync=4 

• Non-parallel 
• Serial execution until out of events, 

then rolls back to time zero 
• Optimistic Realtime --sync=5 

• Typical Time Warp scheduler, 
interrupt for GVT based on wall-clock-time elapsed
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Lamport Path

• Each LP and Event has a Lamport Path counter 

• For each LP the count starts at 0 

• For each new event, set path to LP’s path +1 

• Just before each forward event handler,  
LP’s path is updated to MAX(LP’s Path, Event’s Path)+1
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Lamport Path 
Implementation

• Path should be deterministic! 

• State-save LP’s path value before updating for an event 

• Use event memory as buffer 

• But only after event has been processed

// state-save and update the LP's critical path 
unsigned int prev_lpath = lp->lpath; 
lp->lpath = MAX(lp->lpath, ev->lpath) + 1; 
(*lp->type->event)(…); 
ev->lpath = prev_lpath;
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Critical Path

• Goal: Determine the absolute minimum running time for a 
simulation 

• Mapping Independent 

• Processing time for an event 

• Find maximum length critical path

11



Critical Path 
Implementation

// state-save and update the LP's critical path 
unsigned int prev_cp = lp->cp; 
lp->cp = MAX(lp->cp, ev->cp); 
lp->cycle = get_cycle() 
(*lp->type->event)(…); 
//tw_event_new:  
//   ev->cp = lp->cp + get_cycle() - lp->cycle 
lp->cp += get_cycle() - lp->cycle; 
ev->cp = prev_cp;
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• Simple callback, similar to event handlers

Commit Function

void commit(state *s, msg *m,  
            tw_bf *bf, tw_lp *lp);

tw_lptype my_lps[] = {(init_f)    init, 
 (pre_run_f) prerun, 
 (event_f)   forward, 
 (revent_f)  reverse, 
 (commit_f)  commit, 
 (final_f)   finish, 
 (map_f)     map, 
 sizeof(state)}
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Commit Function 
Scheduling

• Sequential and Conservative: 
called after an event is processed 

• Optimistic and Optimistic Realtime: 
called during event fossil collection after GVT 
in the order they were initially processed 

• Optimistic Debug: 
not called
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RIO Version 2

• ROSS IO 

• Library for Checkpoint Restart 

• Used in 5.9 million LP gates simulation 

• Simplified API 

• Documentation (on the blog) 

• Optimistic Mode!
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RIO API 
Model Callbacks

• LP Size 
size_t lps (void *state, tw_lp *lp); 

• LP Serialize 
void ser (void *state, void *buffer, tw_lp *lp); 

• LP Deserialize 
void ds (void *state, void *buffer, tw_lp *lp);
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RIO API 
Global Variable Settings

• io_lptypes g_io_lp_types[ ] 

• unsigned int g_io_number_of_files, --io-files=n 

• unsigned int g_io_events_buffered_per_rank
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RIO API 
Function Calls

• Init after setting vars, before tw_run 
void io_init(); 

• Invoke load before calling tw_run 
void io_load_checkpoint(char *cp_name,  
                  [PRE_INIT, INIT, POST_INIT] ); 

• Invoke store after calling tw_run (before tw_end) 
void io_load_checkpoint(char *cp_name, int dfn);
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Ties in ROSS currently

• Users must add random jitter to each event 

• Non-Obvious to model developers 

• Accumulated impact on time 

• Still possible to have tie events 

• Statistic counter for number of ties detected during run

tw_event_new(destination,  
             tw_rand_exponential(lp->rng, mean) 
              + lookahead, 
             lp)
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Ties 
Desired Mechanism

• Symmetric across all ties 

• Invariant on IDs, receiver, sender 

• Determined by the programmer 

• Option for a callback implemented by model 

• Deterministic default policy included by ROSS 

• Since it will not be rolled back,  
tie-break function cannot modify LP state
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• A set of events trigger an ordered set of actions 

1. Set of tied events is passed to a tie-breaker callback 

• Reorder the list 

• Remove an event/action 

• Add an event/action 

2. Process each event in the returned list separately

Ties 
Events Trigger Actions
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Ties 
Alternate Use Case 1: Logic Gates

• Ties are allowed: All-at-once strategy 

• Give the event handlers all events 
that tie 

• Linked list, deterministically ordered by ROSS 

• This set of events is treated as a single event for causality/
rollback purposes 

• ==> must be handled by model.

1
1
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• Some models may in fact want a random ordering 

• Calling the RNG represents a change of LP state 

• Is there a way to support deterministic, yet random 
ordering without having to rollback the tie breaker 
function?

Ties 
Alternate Use Case 2: Real “Random” Ordering
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Ties 
Possible Future Implementation

• Tie-breaking callback function 

• This function should order the actions taken from this set 
of events (ROSS terminology: action = message) 

• Two new ROSS API functions: tw_msg_free, tw_msg_new 
which turn on/off a “do_action” flag 

• Model developer must manipulate linked-list pointers

void tie_break(state *s, tw_lp *lp, tw_event *evs); 
//we need both |- - LP Info - - - ||- event set -|
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Ties 
Possible Future Implementation

• Issue: where does the “process these actions” loop 
occur? 

• Answer: in ROSS, not the event handler 

• model can figure out something special to handle All-at-
once case.
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Ties 
Caveats

• How should we deal with the addition/removal of events in tie 
breaker function? 

• Potential for N rollbacks for N tie events at the same LP 

• What about zero-delay messages? 

• Should we even allow users to send zero-delay messages? 

• Possible solution: implement a hidden “time” field 

• Implementation shouldn’t impact lazy cancellation
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Ties 
Rollback

1. ROSS orders the tied event set 
2. ROSS calls model’s tie-breaker function 
3. Model function edits the event set: sort/add/remove 
The remove method simply flips a bit to turn off processing 

4. ROSS calls event handler for each event in the set 
5. Anti-message for an event in the set arrives 
6. Each forward event is rolled back 
7. Anti-message destroys the event in the set 
8. ROSS orders the tied event set: 
previous add/remove actions are undone
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ROSS Improvements

Additional Features Publicity and 
Documentation

GitHub Issue

Development

Test Documentation

Pull Request

WebsiteGitHub Repository
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GitHub
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GitHub 
Issues

• Active Website & Blog: ross.cs.rpi.edu 

• Hosted on GitHub: github.com/carothersc/ROSS

Open Issues

1
5

19

10

35

Closed Issues

12
5

2

18

11
gonsie
JohnPJenkins
carns
laprej
markplagge
mmubarak

39
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GitHub 
Pull Requests

• Active Website & Blog: ross.cs.rpi.edu 

• Hosted on GitHub: github.com/carothersc/ROSS

Accepted 
Pull Requests

11
3

1

9

5

19

Declined 
Pull Requests

1

1

2

gonsie
JohnPJenkins
carns
laprej
pdbj
gitter
shiftky
carothersc

4
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GitHub 
Website: gh-pages branch
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GitHub 
Contributing Guides
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Get Involved

• Add completed models to 
github.com/carothersc/ROSS-Models 

• Request a feature or report an issue: 
GitHub Issues 

• Make a change 
.github/CONTRIBUTING.md guide, PR template 

• Write a blog post!  
CONTRIBUTING.md guide in gh-pages branch

You are the future!
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Thank you


