
ROSS: Past, Present, and Future

Elsa Gonsiorowski

July 12, 2016

Summer
of CODES

2016!!

1999 

May 2009

Aug 2013

Jan 2015

Apr 2015

Feb 2016

Development Timeline

GA Tech Time Warp implementation by
Shawn Pearce and Dave Bauer

ROSS v5.0 released on Source Forge

ROSS released on GitHub

Simplified ROSS

Travis CI Testing

ROSS Blog
2

Last April

Summer of
CODES 

Developing

Future

Feature Additions

Optimistic Realtime Scheduler

Lamport Path Statistic 
Commit Function 
RIO v2

Visualization

Large Message Support 
Preemptive Termination 
Event Retraction 
Ties

3

ROSS Schedulers

• Sequential --sync=1
• Conservative --sync=2
• Optimistic --sync=3
• Optimistic Debug --sync=4

• Non-parallel
• Serial execution until out of events, 

then rolls back to time zero
• Optimistic Realtime --sync=5

• Typical Time Warp scheduler, 
interrupt for GVT based on wall-clock-time elapsed

4

Lamport Path

• Each LP and Event has a Lamport Path counter

• For each LP the count starts at 0

• For each new event, set path to LP’s path +1

• Just before each forward event handler,  
LP’s path is updated to MAX(LP’s Path, Event’s Path)+1

5

Lamport Path 
Implementation

• Path should be deterministic!

• State-save LP’s path value before updating for an event

• Use event memory as buffer

• But only after event has been processed

// state-save and update the LP's critical path
unsigned int prev_lpath = lp->lpath;
lp->lpath = MAX(lp->lpath, ev->lpath) + 1;
(*lp->type->event)(…);
ev->lpath = prev_lpath;

6

Lamport Path 
Implementation

• Path should be deterministic!

• State-save LP’s path value before updating for an event

• Use event memory as buffer

• But only after event has been processed

// state-save and update the LP's critical path
unsigned int prev_lpath = lp->lpath;
lp->lpath = MAX(lp->lpath, ev->lpath) + 1;
(*lp->type->event)(…);
ev->lpath = prev_lpath;

7

Lamport Path 
Implementation

• Path should be deterministic!

• State-save LP’s path value before updating for an event

• Use event memory as buffer

• But only after event has been processed

// state-save and update the LP's critical path
unsigned int prev_lpath = lp->lpath;
lp->lpath = MAX(lp->lpath, ev->lpath) + 1;
(*lp->type->event)(…);
ev->lpath = prev_lpath;

8

Lamport Path 
Implementation

• Path should be deterministic!

• State-save LP’s path value before updating for an event

• Use event memory as buffer

• But only after event has been processed

// state-save and update the LP's critical path
unsigned int prev_lpath = lp->lpath;
lp->lpath = MAX(lp->lpath, ev->lpath) + 1;
(*lp->type->event)(…);
ev->lpath = prev_lpath;

9

Lamport Path 
Implementation

• Path should be deterministic!

• State-save LP’s path value before updating for an event

• Use event memory as buffer

• But only after event has been processed

// state-save and update the LP's critical path
unsigned int prev_lpath = lp->lpath;
lp->lpath = MAX(lp->lpath, ev->lpath) + 1;
(*lp->type->event)(…);
ev->lpath = prev_lpath;

10

Critical Path

• Goal: Determine the absolute minimum running time for a
simulation

• Mapping Independent

• Processing time for an event

• Find maximum length critical path

11

Critical Path 
Implementation

// state-save and update the LP's critical path
unsigned int prev_cp = lp->cp;
lp->cp = MAX(lp->cp, ev->cp);
lp->cycle = get_cycle()
(*lp->type->event)(…);
//tw_event_new:
// ev->cp = lp->cp + get_cycle() - lp->cycle
lp->cp += get_cycle() - lp->cycle;
ev->cp = prev_cp;

12

Critical Path 
Implementation

// state-save and update the LP's critical path
unsigned int prev_cp = lp->cp;
lp->cp = MAX(lp->cp, ev->cp);
lp->cycle = get_cycle()
(*lp->type->event)(…);
//tw_event_new:
// ev->cp = lp->cp + get_cycle() - lp->cycle
lp->cp += get_cycle() - lp->cycle;
ev->cp = prev_cp;

13

Critical Path 
Implementation

// state-save and update the LP's critical path
unsigned int prev_cp = lp->cp;
lp->cp = MAX(lp->cp, ev->cp);
lp->cycle = get_cycle()
(*lp->type->event)(…);
//tw_event_new:
// ev->cp = lp->cp + get_cycle() - lp->cycle
lp->cp += get_cycle() - lp->cycle;
ev->cp = prev_cp;

14

• Simple callback, similar to event handlers

Commit Function

void commit(state *s, msg *m,
 tw_bf *bf, tw_lp *lp);

tw_lptype my_lps[] = {(init_f) init,
 (pre_run_f) prerun,
 (event_f) forward,
 (revent_f) reverse,
 (commit_f) commit,
 (final_f) finish,
 (map_f) map,
 sizeof(state)}

15

Commit Function 
Scheduling

• Sequential and Conservative: 
called after an event is processed

• Optimistic and Optimistic Realtime: 
called during event fossil collection after GVT 
in the order they were initially processed

• Optimistic Debug: 
not called

16

RIO Version 2

• ROSS IO

• Library for Checkpoint Restart

• Used in 5.9 million LP gates simulation

• Simplified API

• Documentation (on the blog)

• Optimistic Mode!

17

RIO API 
Model Callbacks

• LP Size 
size_t lps (void *state, tw_lp *lp);

• LP Serialize 
void ser (void *state, void *buffer, tw_lp *lp);

• LP Deserialize 
void ds (void *state, void *buffer, tw_lp *lp);

18

RIO API 
Global Variable Settings

• io_lptypes g_io_lp_types[]

• unsigned int g_io_number_of_files, --io-files=n

• unsigned int g_io_events_buffered_per_rank

19

RIO API 
Function Calls

• Init after setting vars, before tw_run 
void io_init();

• Invoke load before calling tw_run 
void io_load_checkpoint(char *cp_name,  
 [PRE_INIT, INIT, POST_INIT]);

• Invoke store after calling tw_run (before tw_end) 
void io_load_checkpoint(char *cp_name, int dfn);

20

Ties in ROSS currently

• Users must add random jitter to each event

• Non-Obvious to model developers

• Accumulated impact on time

• Still possible to have tie events

• Statistic counter for number of ties detected during run

tw_event_new(destination,
 tw_rand_exponential(lp->rng, mean)
 + lookahead,
 lp)

21

Ties 
Desired Mechanism

• Symmetric across all ties

• Invariant on IDs, receiver, sender

• Determined by the programmer

• Option for a callback implemented by model

• Deterministic default policy included by ROSS

• Since it will not be rolled back,  
tie-break function cannot modify LP state

22

• A set of events trigger an ordered set of actions

1. Set of tied events is passed to a tie-breaker callback

• Reorder the list

• Remove an event/action

• Add an event/action

2. Process each event in the returned list separately

Ties 
Events Trigger Actions

23

Ties 
Alternate Use Case 1: Logic Gates

• Ties are allowed: All-at-once strategy

• Give the event handlers all events 
that tie

• Linked list, deterministically ordered by ROSS

• This set of events is treated as a single event for causality/
rollback purposes

• ==> must be handled by model.

1
1

24

• Some models may in fact want a random ordering

• Calling the RNG represents a change of LP state

• Is there a way to support deterministic, yet random
ordering without having to rollback the tie breaker
function?

Ties 
Alternate Use Case 2: Real “Random” Ordering

25

Ties 
Possible Future Implementation

• Tie-breaking callback function

• This function should order the actions taken from this set
of events (ROSS terminology: action = message)

• Two new ROSS API functions: tw_msg_free, tw_msg_new 
which turn on/off a “do_action” flag

• Model developer must manipulate linked-list pointers

void tie_break(state *s, tw_lp *lp, tw_event *evs);
//we need both |- - LP Info - - - ||- event set -|

26

Ties 
Possible Future Implementation

• Issue: where does the “process these actions” loop
occur?

• Answer: in ROSS, not the event handler

• model can figure out something special to handle All-at-
once case.

27

Ties 
Caveats

• How should we deal with the addition/removal of events in tie
breaker function?

• Potential for N rollbacks for N tie events at the same LP

• What about zero-delay messages?

• Should we even allow users to send zero-delay messages?

• Possible solution: implement a hidden “time” field

• Implementation shouldn’t impact lazy cancellation

28

Ties 
Rollback

1. ROSS orders the tied event set
2. ROSS calls model’s tie-breaker function
3. Model function edits the event set: sort/add/remove 
The remove method simply flips a bit to turn off processing

4. ROSS calls event handler for each event in the set
5. Anti-message for an event in the set arrives
6. Each forward event is rolled back
7. Anti-message destroys the event in the set
8. ROSS orders the tied event set: 
previous add/remove actions are undone

29

ROSS Improvements

Additional Features Publicity and 
Documentation

GitHub Issue

Development

Test Documentation

Pull Request

WebsiteGitHub Repository

30

GitHub

31

GitHub 
Issues

• Active Website & Blog: ross.cs.rpi.edu

• Hosted on GitHub: github.com/carothersc/ROSS

Open Issues

1
5

19

10

35

Closed Issues

12
5

2

18

11
gonsie
JohnPJenkins
carns
laprej
markplagge
mmubarak

39

32

http://ross.cs.rpi.edu
http://github.com/carothersc/ROSS

GitHub 
Pull Requests

• Active Website & Blog: ross.cs.rpi.edu

• Hosted on GitHub: github.com/carothersc/ROSS

Accepted 
Pull Requests

11
3

1

9

5

19

Declined 
Pull Requests

1

1

2

gonsie
JohnPJenkins
carns
laprej
pdbj
gitter
shiftky
carothersc

4

33

http://ross.cs.rpi.edu
http://github.com/carothersc/ROSS

GitHub 
Website: gh-pages branch

34

GitHub 
Contributing Guides

35

Get Involved

• Add completed models to 
github.com/carothersc/ROSS-Models

• Request a feature or report an issue: 
GitHub Issues

• Make a change 
.github/CONTRIBUTING.md guide, PR template

• Write a blog post!  
CONTRIBUTING.md guide in gh-pages branch

You are the future!

36

Thank you

